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Introduction

Have you ever played with LEGO Mindstorms NXT robotic set? Associative modelling is something
like that! While it seems that everything tends to be Algorithmic and Parametric why not
architecture?

During my Emergent Technologies and Design (EmTech) master course in the Architectural
Association (AA), | decided to share my experience in realm of Algorithmic design and Associative
Modelling with Grasshopper as | found it a powerful platform for design in this way. | did this
because it seems that the written, combined resources in this field are limited (although on-line
resources are quiet exciting). This is my first draft and | hope to improve it and | also hope that it
would be helpful for you.

Mohamad Khabazi

© 2009 Mohamad Khabazi

This book produced and published digitally for public use. No part of this book may be reproduced in
any manner whatsoever without permission from the author, except in the context of reviews.

m.khabazi@gmail.com

www.khabazi.com/flux



Contents
Chapter_1_AIgorithmic MOdelliNg .............ocuiiiiiiiiie e e e e 1
Chapter_2_The Very BeZINNING............c..uviiiiiiiiiiiiieee ettt e e e e e st re e e e e s e naaae e e e e e e e snneraneeas 5
N A 11 o T USSR 6
2 2 The very basics Of GrasShOPPEL ... ..uiiiiiiee e e e et e e e e e e e sbaae e e e e e eeennes 7
2 2 1 Interface, WOIKPIACE ....uuiiiiiiee ettt ettt e s e e e e s bee e e e be e e e eatee e e e araeeeenres 7
2 2 2 COMP O ENES ettt bbbttt bttt bttt bbbttt bbbttt e b ea et eeeeataeeeaaaes 8
W A T - - I 11T 1 o] o1 o V- PSP SN: 14
2 2 4 Component’s Help (Context POP-UP MENU)...cccccuuiieeeiiieeeeiiieeeeereeeeecireeeeenreeessnsseeeeenseeeeas 16
2 2 5 Type-In component searching / adding .......c.ccovviieoieieeieieeeeccee et 17
2 2 6_Geometry Preview Method ...ttt e e e rraae e e 17
R T O 1 o [T Y=Y Yo TU ol Y-SR 18
Chapter_3_Datasets and Math .................oooiiii it rte e e e raa e e e eaes 19
3 1 NUMENICAl DAta SEES .o iiiiiiieee et e e e e e e s st e e e e e e s baaeeeeeeeesnaraaaeeeeesennnnns 20
3 2 ONn PoiNts aNd POINt GridS ....ceeeiiiiciiiiiiiie ettt e e e et re e e e e s eeetre e e e e e e e e sanssaeeeeeseennnnns 22
3 3 Other NUMEIICAl SEES ... .uuuiiiiiie ittt e ettt e e e e e e e st e e e e e e e e tbbaeeeaeeessnnssaaeeeaeeesnnsnns 23
K 2101 o Uot o T s [PPSO PPPPPUPUPPPPPPPPPI 25
I = To Lo [oE Lo J B 1 IR 8] 1T J SRS 28
I T OV 5 1 =T 13 USSRt 30
A A N C1=Te ] g Loy d g Tor= Y Il oY =T o o TSP 35
Chapter_4_Transformation..............ooooiiiiiiiiiii e e e e et e e s e e e e sbteeeesbaeeenans 46
O V= Tot o o =T g Lo o - [ USRS 48
4 2 0On curves and [INEar BEOMELIIES .......ueii it et e et e e e e ae e e e sbe e e e e eatae e e eanes 49
4 3 Combined EXPeriment: SWISS Re......cccuiiiiiiiiiciiiiiiieee ettt e e e st ee e e e e s sataee e e e s e s s nannaanaeeeeean 57

O O I AN = ot o ] 3Nt 68



Chapter_ 5 _ParametriC SPACE.........cooccuiiiiiiii e e e e e e s e e e e e e s e s ae e e e e e e e e ennnraaneeas 80
5 1 One Dimensional (1D) ParametriC SPACE.....ccccueiieiiiieeeiiieeecitee e et e et e e tee e e sare e e e earaee e enns 81

5 2 Two Dimensional (2D) ParametriC SPaCe.....cccuuiiieiieeeeecitiee ettt ettt e et eee e e e e b e e e taee e ennis 83
5_3_Transition DELWEEN SPACES ......vviiiiiiieeeciiee ettt e e e e re e e e ee e e et bae e e s baeeeesbeeeeennses 84
5_4 Basic Parametric COMPONENTS ... .cceieieieeeeee ettt sababe e bebeseeeeeenenene 85

5 4 1 CUIVE EVAlUGLION ..eeeeiiiiee ettt ettt e e et e e et e e e s e bae e e eentaeeesntaeeesnseneaeanes 85

5 4 2 SUrface EVAlUALION ........ooiiiiiee ettt et e e e e e bte e e e ebae e e e eata e e e enraeaeeaes 86

5 5 On Object Proliferation in Parametric SPaCE ... .uuuiiiii ittt vrre e e 88
Chapter_6_ Deformation and MOrphing.............cccooiiiiiiiiiiiiii e e s evae e 96
6_1 Deformation and MOIPhING .......cooiciiiiiciee et e e ee e s s aae e e e e aaee e enaees 97
oI A O Lo W =T o Tl 172 L o SRS 99
6_3 _Micro Level Manipulations .......cccceuiiiiiiii ittt s s e e e e s e s ebrree e e s e e enbraneeeeseenannes 102
6_4 0N ResponsiVe ModUIAtioN ........c...uiiiiiiii et e e e e e e et ae e e e e e e e ennes 106
Chapter 7_NURBS Surface and Meshes................cuoiiiiiiiiiiiiiie et e e 112
7_1 Parametric NURBS SUIMACES ... ..ciiiiiiie ettt ettt e e e etee e e e ate e e e e bae e e e abae e e e nteeeenanes 113

7 2 MESh VS. NURBS ..o ittt e e e s e e e e e et e e e e e e s s s nbsteeeeeeeesnnreaneeaeseannnnne 124

7 2 1 Geometry and TOPOIOBY .uveeeiieeiiiiiiee e et ee e e e e e re e e e e e e s enntaeeeeeeean 124
A T O o I T o [ V] =T o SRR SRRt 126
A O Lo W o] (o U N T Y2 LSRR 135

7 _5 Manipulating Mesh objects as @ Way 0f DESIZN.......cooccivirieeieeiiiiiiieeee e errreeee e e e 139
Chapter_8 _Fabrication...............oooiiiiiiie e e e e e e s e e e e e s s e saabeeeeeeeesenannnes 141
S A B - § = 1] 1T ST 143

8 2 Laser Cutting and Cutting based Fabrication .......cccccooccuiiiiiei e 155
Chapter_9_Design STrat@BY .........ccciiiiiiiiee ettt et e e et e e e st e e e tb e e e ssaaaeeesnsseeesansaeeesnnsaeeeas 170

=11 ¢ [T =4 - ] | U 174



Chapter_1_Algorithmic Modelling




Chapter_1_Algorithmic Modelling

If we look at architecture as an object represented in the space, we always deal with geometry and a
bit of math to understand and design this object. In the History of architecture, different
architectural styles have presented multiple types of geometry and logic of articulation and each
period have found a way to deal with its geometrical problems and questions. Since computers
started to help architects, simulate the space and geometrical articulations, it became an integral
tool in the design process. Computational Geometry became an interesting subject to study and
combination of programming algorithms with geometry yielded algorithmic geometries known as
Generative Algorithm. Although 3D softwares helped to simulate almost any space visualized, it is
the Generative Algorithm notion that brings the current possibilities of design, like ‘parametric
design’ in the realm of architecture.

Architects started to use free form curves and surfaces to design and investigate spaces beyond the
limitations of the conventional geometries of the “Euclidian space”. It was the combination of
Architecture and Digital that brought ‘Blobs’ on the table and then push it further. Although the
progress of the computation is extremely fast, architecture has been tried to keep track with this
digital fast pace progress.

Contemporary architecture after the age of “Blob” seems to be even more complex. Architectural
design is being affected by the potentials of algorithmic computational geometries with multiple
hierarchies and high level of complexity. Designing and modelling free-form surfaces and curves as
building elements which are associated with different components and have multiple patterns is not
an easy job to do with traditional methods. This is the time of algorithms and scripts which are
forward pushing the limits. It is obvious that even to think about a complex geometry, we need
appropriate tools, especially softwares, which are capable of simulating these geometries and
controlling their properties. As the result architects feel interested to use Swarms or Cellular
Automata or Genetic Algorithms to generate algorithmic designs and go beyond the current pallet of
available forms and spaces. The horizon is a full catalogue of complexity and multiplicity that
combines creativity and ambition together.



Fig.1.1. Parametric Modelling for Evolutionary Computation and Genetic Algorithm, Mohamad
khabazi, Emergence Seminar, AA, conducted by Michael Weinstock, fall 2008.

A step even forward, now embedding the properties of material systems in design algorithms seems
to be more possible in this parametric notion. Looking forward material effects and their responses
to the hosting environment in the design phase, now the inherent potentials of the components and
systems should be applied to the parametric models of the design. So not only these generative
algorithms does not dealing only with form generation, but also there is a great potential to embed
the logic of material systems in them.

“The underlying logic of the parametric design can be instrumentalised here as an alternative design
method, one in which the geometric rigour of parametric modelling can be deployed first to integrate
manufacturing constraints, assembly logics and material characteristics in the definition of simple
components, and then to proliferate the components into larger systems and assemblies. This
approach employs the exploration of parametric variables to understand the behaviour of such a
system and then uses this understanding to strategise the system’s response to environmental
conditions and external forces” (Hensel, Menges, 2008).

To work with the complex objects, usually a design process starts from a very simple first level and
then other layers being added to it; complex forms are comprised of different hierarchies, each
associated with its logics and details. These levels are also interconnected and their members affect
each other and in that sense this method called ‘Associative’.

Generally speaking, Associative modelling relates to a method in which elements of design being
built gradually in multiple hierarchies and at each level, some parameters of these elements being
extracted to be the generator for other elements in the next level and this goes on, step by step to
produce the whole geometry. So basically the end point of one curve could be the center point of
another circle and any change in the curve would change the circle accordingly. Basically this
method of design deals with the huge amount of data and calculations and runs through the flow of
algorithms.

Instead of drawing objects, Generative Algorithmic modelling usually starts with numbers,
mathematics and calculations as the base data to generate objects. Even starting with objects, it
extracts parametric data of that object to move on. Any object of design has infinite positions inside,



and these positions could be used as the base data for the next step and provide more possibilities
to grow the design. The process called ‘Algorithmic’ because of this possibility that each object in the
algorithm generated by previously prepared data as input and has output for other steps of the
algorithm as well.

The point is that all these geometries are easily adjustable after the process. The designer always has
access to the elements of the design product from the start point up to details. Actually, since the
design product is the result of an algorithm, the inputs of the algorithm could be changed and the
result would also be updated accordingly. In conventional methods we used to modify models and
designs on paper and model the final product digitally, to avoid changes which was so time-
consuming. Any change in the design affected the other geometries and it was dreadful to fix the
problems occurred to the other elements connected with the changed element and all those items
should be re-adjusted, re-scaled, and re-orientated if not happened to re-draw.

It is now possible to digitally sketch the model and generate hundreds of variations of the project by
adjusting some very basic geometrical parameters. It is now possible to embed the properties of
material systems, Fabrication constraints and assembly logics in parameters. It is now even possible
to respond to the environment and be associative in larger sense. “... Parametric design enables the
recognition of patterns of geometric behaviour and related performative capacities and tendencies of
the system. In continued feedback with the external environment, these behavioural tendencies can
then inform the ontogenetic development of one specific system through the parametric
differentiation of its sub-locations” (Hensel, Menges, 2008).

Fig.1.2. A. form-finding in membranes and minimal surfaces, physical model, B. membrane’s

movement modelled with Grasshopper, Mohamad Khabazi, EmTech Core-Studio, AA, Conducted by
Michael Hensel and Achim Menges, fall 2008.

Grasshopper is a platform in Rhino to deal with this Generative Algorithms and Associative
modelling. The following chapters are designed in order to combine geometrical subjects with
algorithms and to address some design issues in architecture in an ‘Algorithmic’” method.
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Chapter_2_The very Beginning

2_1_Method

By the time that you downloaded the Grasshopper, | am sure that you went through the website and
up to now you have some idea that what is it all about and how it works generally. You might have
seen some of the on line video tutorials as well. If you have a look at the “"Grasshopper Primer” by
Andy Payne of Lift Architects (which is addressed in the Grasshopper website), you will find almost
all basic understanding of working with components and some related subjects like vectors, different
types of curves, surfaces and so on.

| would try not to repeat this great information and | recommend you to go through them, if you
have not yet! So in the following chapters | would try to focus on different concepts and examples of
Associative Modelling mostly related to architecture. In most cases | assumed that you already know
the basic understanding of the ingredients of the discussion and | would not go through the
definition of the ‘degree of a curve’ although | will touch some.

To start the Grasshopper and have a general idea about it, the best to do is to go to the following
link and check the Grasshopper web page. There is some useful information that gives you the basic
understanding to start with. You can keep yourself updated by the discussions in the forum as well.
By the way here in this chapter | just briefly discussed about general issues of workplace and basics
of what we should know in advance.

grasshopper

GENERATIVE MODELING FOR RHINO

http://grasshopper.rhino3d.com/




2_2 The very basics of Grasshopper

2 2 1 Interface, workplace

Beside the other usual Windows menus, there are two important parts in the Grasshopper interface:
Component panels and Canvas. Component panels provide all elements we need for our design and
canvas is the work place. You can click on any object and click again on canvas to bring it to work
place or you can drag it on to the work place. Other parts of the interface are easy to explore and we
will be familiar with them throw using them later on. (If you like to know more, just go to
http://grasshopper.rhino3d.com/2008/05/interface-explained_26.html for more details)

Grasshopper - unnamad* - (=) ﬂ

Fil

Scalar Vector Surface Vies Intersect KForm

000000009000 BEBE component men
AP 000D 00000 ey PoNe FEEREL

Prmitve

W | 0%

.Fig.2.1. Grasshopper Component menu and Canvas.



2_2 2 Components

There are different types of objects in Grasshopper component menu which we use to design stuff.
You can find them under nine different tabs called: Params, Logic, Scalar, Vector, Curve, Surface,
Mesh, Intersect and XForm.

Params | Logic Scalar ector Curve Surface Mesh Intersec HForm

000QRVVE VeV @.E@
QEREELO Ve EduW

Parameters are objects that represent data, like a point or line. We can define them manually from
Rhino objects as well. Components are objects that do actions with them like move, orientate, and
decompose. We usually need to provide relevant data for them to work. In this manual | used the
term component to talk about any objects from the component panel to make life easier! and |
always use <> to address them clearly in the text, like <Point>.

X
Y

Pt D

<Point> component

If you right-click on a component a menu will pop-up that contains some basic aspects of the
component. This menu called “context pop-up menu”.

Pt

Preview
Mo Runtime messages

Shortest list

Longest list

Cross reference

Input: X 3

Input: ¥ 3

Input: Z 3

Output: Pt 3
@ Help...

Context pop-up menu of <Pt> component



Defining external geometries

Most of the time we start our design by introducing some objects from Rhino workplace to the
Grasshopper; A point, a curve, a surface up to multiple complex objects to work on them. Since any
object in Grasshopper needs a component in canvas to work with, we can define our external
geometries in canvas by components in the Params tab under Geometry. There is a list of different
types of geometries that you can use to define your object.

After bringing the proper geometry component to the canvas, define a Rhino object by right-click on
the component (context menu) and use “set one ... / set multiple ... “ to assign abject to the
component. By introducing an object/multiple objects to a component it becomes a Grasshopper
object which we can use it for any purpose. It means we can use our manually created objects or
even script generated objects from Rhino in Grasshopper.

Grasshopper - unnamed®

File Edit Wiew  Arrange  Solution  Window  Help

h Intersect X¥Form

mﬁ@@

Farams | Logic Scalar Vector Curve Surface M

000008
000006

ERep

Circle 6 Paint

Circular Arc ¥ Surface

@
O
o
€) Cure {2) Twisted Box
@
<

Geometry a Vector

Line

Fig.2.2. Different geometry types in the Params > Geometry menu

Let’s have a simple example.

We have three points in the Rhino viewport and we want to draw a triangle by these points. First we
need to introduce these points in Grasshopper. We need three <point> components from Params >
Geometry > Point and for each we should go to their context menu (right click) and select ‘set one
point’ and then select the point from Rhino viewport (Fig.2.6).
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b

Pt

. Preview

@ Runtime warnings 3

Disconnect All

Disconnect

Set multiple Points
Manage Point collection

Clear values

Extract parameter

Expression [

@ Hep..

Fig.2.3. Set point from Rhino in Grasshopper component

% Untitled - Rhinoc

File Edit View Curve Surface Solid Mesh Dimension Transform Tools Anaﬁ Render Mnnk= HEIE

- Point object to reference ( Type=Point ) Grasshopper - unnamed*
“Point object to reference ( Type=Point ):
Command: | File Edit View Amange Solutien Window Help

NeE8TXDh0-MEpnoe
‘@@@9%%@

B o - R AL W ves- [ Db | K0 O

W POIMCA

pomt B

(

pomntc

HSehIFQHOVE” ¥
Fu+4e bR §@o I G -

oo

(1) Floating parameter Pt failed to collect data (220 seconds ago)

:[W]End []Near []Point [#IMd [JCen [t [JPem [JTan [7]Quad [7]Knot Qﬁniedgs'ﬁad(g][isﬂe|
CPlane  x1.57 y4.98 2000 W Default Snap Ortho Planar Osnap  Record History

Fig.2.4. The Grasshopper canvas and three points defined in the canvas which turned to (x) in the
Rhino workplace. | renamed the components to point A/B/C by the first option of their menu to
recognize them easier in Grasshopper canvas.

IChapter 2
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Components and connections

There are so many different actions that we can perform by components. Generally a component
takes some data from another source (like parameters) and gives the result back. We need to
connect the component which includes the input data to the processing component and connect the
result to the other component that needs this result and so on.

Going back to the example, now if you go to the Curve tab of components, in the Primitive section
you will see a <line> component. Drag it to the canvas. Then connect <point A> to the A port of the
<line> and <point B> to the B port (just click on the semi-circle and drag it up to the other semi-circle
on the target. You can see that Rhino draws a line between these points).

Fig.2.5. Connecting the <point> components to the <line> component by dragging from output of the
<point B> to the input of the <line>.

Now add another <line> component for <point B> and <point C>. Do it again for <point C> and
<point A> with the third <line> component. Yes! There is a triangle in Rhino.

Fig.2.6. The <line> components draw lines between <point> components. As you see any component
could be used more than once as the source of information for other actions.



Fig.2.7. Now if you change the position of the points manually in Rhino viewport, the position of
points in Grasshopper (X ones) and the triangle will change accordingly and you do not need to
redraw your lines any more.

As you can see in this very first example, the associative modelling technique made it possible to
manipulate the points and still have the triangle between these points without further need to
adjustment. We will do more by this concept.

Input / OQutput

As mentioned before, any component in the grasshopper has input and output which means it
processes the given data and gives the processed data back. Inputs are at left part of the component
and outputs at right. The data comes from any source attached to the input section of the
component and the output of the component is the result of that specific function.

You have to know that what sort of input you need for any specific function and what you get after
that. We will talk more about the different sort of data we need to provide for each component later
on. Here | propose you to hold your mouse or “hover” your mouse over any input/output of the
components. A tooltip will pop up and you will see the name, sort of data you need to provide for
the component, is any predefined data there or not, and even what it for is.

Pt

& ~: (Point)

Represents a list of 30 Points

|E1rptj; Boint list

Fig.2.8. Pop-up tooltip
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Multiple connections

Sometimes you need to feed a component by more than one source of data. Imagine in the above
example you want to draw two lines from point A to point B and C. you can use two different <line>
components or you can use one <line> component and attach both point B and C as the second
point of the <line> component. To do this, you need to hold Shift key when you want to connect the
second source of data to a component otherwise Grasshopper would substitute it (Fig.2.12). When
holding shift, the arrow of the line appear in a green circle with a tiny (+) icon while normally it is
gray. You can also use Ctrl key to disconnect a component from another (or use menu) to disconnect
an existing unwanted connection. In this case the circle around the arrow appears in red with a tiny
(-) icon.

Fig.2.9. Multiple connections for one component by holding shift key

Colour coding

There is a colour coding system inside the Grasshopper which shows the components working
status.

Fig.2.10. The colour coding.

Any gray component means there is no problem and the data defined correctly/the component
works correctly. The orange shows warning and it means there is at least one problem that should
be solved but the component still works. The red component means error and the component does
not work in this situation. The source of the error should be found and solved in order to make
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component works properly. You can find the first help about the source of error in the component’s
context menu (context menu > Runtime warning/error) and then search the input data to find the
reason of the error. The green colour means this component selected. The geometry which is
associated with this component also turns into green in Rhino viewport (otherwise all Grasshopper
geometries are red).

Preview

The components that produce objects in Rhino have the ‘Preview’ option in their menu. We can use
it to hide or unhide it in the scene. Any unchecked preview make the component black part become
hatched. We usually use preview option to hide the undesired geometries like base points and lines
in complex models to avoid distraction.

2 2 3 Data matching

For many Grasshopper components it is always possible to provide a list of data instead of just one
input. So in essence you can provide a list of points and feed a <line> component by this list and
draw more lines instead of one. It is possible to draw hundreds of objects just by one component if
we provide information needed.

Look at this example:

| have two different point sets each with seven points. | used two <point> components and | used
‘set multiple points’ to introduce all upper points in one component and all lower ones in another
component as well. As you see, by connecting these two sets of points to a <line> component, seven
lines being generated between them. So we can generate more than one object with each
component (Fig.2.14)

I

Fig.2.11. Multiple point sets and generating lines by them.
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But what would happen if the number of points would not be the same in two point (data) sets?

In the example below | have 7 points in top row and 10 points in the bottom. Here we need a
concept in data management in Grasshopper called ‘Data matching’. If you have a look at the
context menu of the component you see there are three options called:

Shortest list
Longest list
Cross reference

Look at the difference in the Figure 0.15

= I . Preview
@ Mo Runtime messages
e x
[¥] shortest list

Longest list

Cross reference

Input: A 3
y Input: B 3
% Qutput: L 3

@ Help...

i . Preview
.@ Mo Runtime messages
Shortest list
Longest list
Cross reference
Input: A 4
Input: B 3
5 Qutput: L 4
Lx @ Help...

Ln

Preview

Mo Runtime messages

Shortest list
Longest list
Cross reference
Input: A 3
Input: B 3
Output: L 3
@ Help.

L.

Fig.2.12. Data matching A: shortest list, B: longest list and C: cross reference
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It is clear that the shortest list uses the shortest data set to make the lines with, and the longest list
uses the longest data set while uses an item of the shortest list more than once. The cross reference
option connects any possible two points from the lists together. It is very memory consuming option
and sometimes it takes a while for the scene to upgrade the changes.

Since the figures are clear, | am not going to describe more. For more information go to the
following link: http://grasshopper.rhino3d.com/2008/06/description-of-data-stream-matching.html

2 2 4 Component’s Help (Context pop-up menu)

As it is not useful to introduce all components and you will better find them and learn how to use
them gradually in experiments, | recommend you to play around, pick some components, go to the
components context menu (right-click) and read their Help which is always useful to see how this
component works and what sort of data it needs and what sort of output it provides. There are
other useful features in this context menu that we will discuss about them later.

% Untitled - Rhinoceros (Corporate)

e —r—— |
File_Edit View Curve Surface Solid Mesh Dimension Transiorml Cresshopper - unnamed 1
Autosaving file as C:\ProgramDataiMc! eros\d.0\Auto: File Edit View Arange Selution Window Help unnamed* - -
Autosave completed successfully Params Logic Scalar Vector | Curve | Surface Mesh Intersect XForm =
Command: =
3 pr 5 5 %) =
DEEETXDO~0sps0d(0@2E¥Lra bidr@508/,8 TABS S £4R8K
- -
PO ® 9 & O ’ Q% #B8 F¥d OCOE/D AR FSIREK
T e ————————————
ko o w o FAR Al % ‘g | B
- 6% - DAR FlE W vies- | By | RELO @- b E
e
@ s - E
oint parameter
e e ’ B
poin
&
R B i L
KE I%/ @ Mo Runtime messages Represents a list of 3D Point coordinates. E
g @ Point parameters are capable of storing persistent data.
& cconnect A
= @ DisconnectAll You can set the persistent records through the
O & Disconnect parameter mem1. F
e o :
= Q=2 Set multiple Points Dveloper contact
D a
e S Manage Paint collection
«w —5‘*‘; Clear values
T -~ Extract parameter Remarks
o, 1 Expression 3 D
o2 Iz o Point data is abit special in that it can be both a Rhino
@ Help.. object reference and an actual 3D coordinate. When
9, peee) you specify persistent point data, there's a command
v option that allows you to switch between different
P modes. Note that if you window select point objects for
persistent storage, there is no saying in what order the
points will be stored. If you need a specific order, then
you must pick them one by one - ==
T
T
I

[#1End [¥]Near [¥]Poit [#]Md [J]Cen [@It [JPep []Tan [C]Quad []Knot []Project (] STrack[ ] Disable
CPlane x-1582 y-1231 2000 W Default Snap Ortho Planar Osnap  Record History

Fig.2.13. Context pop-up menu and Help part of the component
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2_2 5 Type-In component searching / adding

If you know the name of the component that you want to use, or if you want to search it faster than
shuffling the component tab, you can double-click on the canvas and type-in the name of the
component to bring it to the canvas. For those who used to work with keyboard entries, this would
be a good trick!

Poly Arc
Surface | Line
Foby Line
Extrude Linear
Curve | Line
BRep | Line
Line SOL

Line | Plane
Line

Line

QAN ANSEBUEDH

line

Fig.2.14. Searching for line component in the component-pop-up menu by double clicking on the
canvas and typing the name of it. The component will be brought to the canvas.

2 2 _6_Geometry Preview Method

Mesh Intersec KForm

) 59 v o)

Qe]mEs

B- | &% @
Mo preview
@ Wireframe preview
@ Shaded preview

Fig.2.15. In order to enhance the working speed and get faster updates, whenever your project
becomes heavy to calculate, use the Wireframe Preview option. It is always faster.
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2_3 Other Resources

There are so many great on-line resources and creative ideas that you can check and learn from
them. Here are some of them:

Main Grasshopper web page:

http://grasshopper.rhino3d.com/2008/06/some-examples-of-grasshopper.html

Some resources on McNeel Wiki WebPages:

http://en.wiki.mcneel.com/default.aspx/McNeel/ArchitectureCommunity.html

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryExamples.html

(Links to other resources)

As mentioned before, the Grasshopper Primer from Lift Architects:

http://www.liftarchitects.com/journal/2009/1/22/the-grasshopper-primer.html

And hundreds of on-line video tutorials which you can search easily.
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Although in 3D softwares we used to select our geometry from menus and draw them explicitly by
clicking without thinking of the mathematical aspects of what we design, in order to work with
Generative Algorithms, as the name sounds, we need to think a bit about data and math to make
inputs of algorithm and generate multiple objects. Since we do not want to draw everything
manually, we need some sources of data as the basic ingredients to make this generation possible.

The way algorithm works is simple and straightforward. As | said, instead of copying by clicking 100
times in the screen, we can tell the algorithm, copy an item for 100 times in X positive direction. To
do that you need to define the 100 as number of copying and X Positive direction for the algorithm,
and it performs the job automatically. All we are doing in geometry has some peace of math behind.
We can use these simple math functions in our algorithms, in combination of numbers and objects,
generate infinite geometrical combinations.

Let’s have a look; it is easier than what it sounds!

3_1_Numerical Data sets

First of all we should have a quick look at numerical components to see how we can generate
different numerical data sets and then the way we can use them.

One numerical value

The most useful number generator is <Number slider> component (Params > Special > Number
slider) that generates one number which is adjustable manually. It could be integer, real, odd, even
and with limited lower and upper values. You can set them all by ‘Edit’ part of the context menu.

For setting one fixed numeric value you can go to the Params > Primitive > Integer / Number to set
one value.



21

Series of numbers

We can produce a list of discrete numbers by <series> component (Logic > Sets > Series). This
component produces a list of numbers which we can adjust the start point, step size of the numbers,
and the number of values.

0,1,2,3,..,100
0,2,4,6,..,100

10, 20, 30, 40, ..., 1000000

Rang of numbers

We can divide a numerical range between a low and high value by evenly spaced numbers and
produce a range of numbers. We need to define an interval to set the lower and upper limit and also
the number of steps between them (Logic > Sets > Range).

1,2,3,..,10
1,25,5,..,10

1,5,10

Rang

Intervals

Intervals provide a range of all real numbers between a lower and upper limit. There are one
dimensional and two dimensional intervals that we talk about them later. We can define a fixed
interval by using Params > Primitive > Interval/interval® component or we can go to the Scalar >
Interval which provides a set of components to work with them in more flexible ways.

Intervals by themselves do not provide numbers, they are just extremes, upper and lower limits. As
you now there are infinite real numbers between any two numbers. We use different functions to
divide them and use division factors as the numerical values.
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3_2 On Points and Point Grids

Points are among the basic elements for geometries and Generative Algorithms. As points mark a
specific position in the space they can be a start point of a curve or multiple curves, centre of a
circle, origin of a plane and so many other roles. In Grasshopper we can make points in several ways.

- We can simply pick a point/bunch of points from the scene and introduce them to our workplace
by <point> component (Params > Geometry > point) and use them for any purposes (These points
could be adjusted and moved manually later on in Rhino scene and affect the whole project.
Examples on chapter_2).

- We can introduce points by <point xyz> component (vector > point > point xyz) and feed the
coordinates of the points by different datasets, based on our needs.

- We can make point grids by <grid hexagonal> and <grid rectangular> components.
- We can extract points from other geometries in many different ways like endpoints, midpoints, etc.

- Sometimes we can use planes (origins) and vectors (tips) as points to start other geometries and
vice versa.

You have seen the very first example of making points in chapter_2 but let’s have a look at how we
can produce points and point sets by <series>, <range> and <number slider> components and other

numerical data providers.

Fig.3.1. feeding a <point xyz> component by three <number slider> to make a point by manually
feeding the X,Y and Z coordinates.

Fig.3.2. Making a grid of points by <series> and <point xyz> components while the first <number
sliders> controls the distance between points and the second one controls the number of points by
controlling the number of values in <series> component (The data match of the <pt> set into cross
reference to make a grid of points but you can try all data matching options).
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Fig.3.3. Dividing a numerical range from 0 to 1 by 5 and feeding a <pt> component with ‘Longest list’
data match. You can see we have 6 points which divided the range by 5 and all points drawn
between the origin point and (1, 1) on the Rhino workplace (you can change the lower and upper
limit of the <range> to change the coordinates of the point).

Since the first experiments look easy, let’s go further, but you can have your own investigations
around these components and provide different point grids with different positions and distances.

3 3 Other Numerical Sets

Random data sets

| was thinking of making a randomly distributed set of points for further productions. All | need is a

set of random numbers instead of a <series> to feed my <pt> component (I use <pt> instead of
<point xyz> because it is shown on the component). So | pick a <random> component from Logic >
sets. To avoid the same values for X,Y and Z, | need different random numbers for each.

Fig.3.4. Making a random point set.

The <random> component produces 10 random numbers which is controlled by <number slider>
and then this list is shuffled by <jitter> component (Logic > Sets > litter) for Y coordinate of the
points once, and again for Z coordinates, otherwise you could see some sort of pattern inside your
grid (check it!). The data match set to longest list again to avoid these sorts of patterns in the grid.

In the figure 3.4 all points are distributed in the space between 0 and 1 for each direction. To change
the distribution area of the points we should change the numerical domain in which random
component produces the numbers. This is possible by manually setting the “domain of random
numeric range” on Rhino command line or by defining the domain intervals adjustable by sliders.
(Fig.3.5)



Fig.3.5. Setting up a domain by an <interval> component (Scalar > Interval > Interval) to increase the
distribution area of the points (look at the density of the scene’s grid in comparison with the Fig.3.4).
If you connect only one <number slider> to the domain of the <random> component it just adjusts
the upper interval of the domain (with lower as 0).

Fibonacci series

What about making a point grid with non-evenly spaced increasing values? Let’s have a look at
available components. We need series of numbers which grow rapidly and under Logic tab and Sets
section we can see a <Fibonacci> component.

A Fibonacci is a series of numbers with two first defined numbers (like 0 and 1) and the next number
is the sum of two previous numbers.

N(0)=0, N(1)=1, N(2)=1, N(3)=2, N(4)=3, N(5)=5, ..., N(i)=N(i-2)+N(i-1)
Here are some of the numbers of the series: 0,1, 1, 2, 3,5, 8, 13, 21, 34, 55, 89, ...
As you see the numbers grow rapidly.

Here | use <Fibonacci> series (Logic > Sets > Fibonacci) to produce incremental numbers and feed
the <pt> component with them.

Fig.3.6. Using <Fibonacci> series to produce increasing distances (none-evenly spaced series of
numbers) to make points. The number of points could be controlled with a <number slider>.
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3 4 Functions

Functions are components that are capable of performing math functions. There are functions from
one to eight variables (Scalar > Expressions). You need to feed a function with different data (not
always numeric but also Boolean, coordinate, etc) and it performs the user defined function on the
input data. To define the function you can right-click on the (F) part of the component and type it or
go to the Expression Editor. Expression editor has so many predefined functions and a library of
math functions for help.

Math functions

Using the predefined components is not always what we aimed for, but in order to get the desired
result we can use mathematical functions to change the data sets and feed them for making
geometries.

A simple example is the mathematical function of a circle that is X=Sin(t) and Y=Cos(t) while (t) is a
range of numbers from 0 to 2 Pi. | am producing it by a <range> of numbers which is starts from 0 to
1 by N number in between, times 2Pi by <function> that means a range of numbers from 0 to 2pi
that makes a complete circle in radian.

Fig.3.7. Parametric circle by mathematical functions. You have <Sin> and <Cos> functions in the
Scalar > Trig. (F(x)=x * 2Pi).

Fig.3.8. Series of points which is defined by <Fibonacci> series and simple mathematical functions
(x->F(x)=x/100, y->F(x)=x/10). The selected green F(x) is a simple function to add 1 to the <number
slider> (x+1) in order to make the values of <series> numbers equal to the Fibonacci numbers. The
aim is to show you that we can simply manipulate these data sets and generate different geometries
accordingly.
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Fig.3.9. A <range> of numbers from 0 to 2 times by 2Pi with <Function> that make it a numerical
range from 0 to 4Pi that feeds the <pt> component by the following math function
(X=t * Sin(t), Y=t * Cos(t)).

You can reduce all components between <range> and <pt> by two functions to feed the <pt> by
defining the whole process in Expression Editor.

X of pt > F(x)=X * Sin (x*2*Pi)

Y of pt > F(x)=X * Cos(x*2*Pi)

Fig.3.10. Inter tangent spirals from two inverted spiral point sets (<range> interval from 0 to 4
multiplied by 2Pi, makes the data set from 0 to 8Pi which is inverted for the second spiral by <Reverse
list> component from Logic > Lists as 8pi to 0).

First <pt>: X=t * Sin(t), Y=t * Cos(t) in which t=0 to 8Pi

Second <pt>: X=t’ * sin(t), Y=t’ * Cos(t) in which t’=8Pi to O (<reverse list>)
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Fig.3.11. Moebius by points
X=Sin(u)*(-2+v*sin(u/2))
Y= Cos(u)*(-2+v*sin(u/2))
Z=v*Cos(u/2)

While u=0 to 8Pi and v=-2 to 2

Playing around the math functions could be endless. You can find so many mathematical resources
to match your data sets with them. The important point is that you can manipulate the original data
sets and generate different numerical values and feed other components by them.

So as you see by some simple set of numerical data we can start to generate different geometries.
Since we need to work with these data sets as a source of our geometries lets go further with them.

Fig.3.12.Enneper surface, by
Rhino’s Math function plug-in.
Designing surfaces with
mathematical equations.

IChapter 3
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3_5_Boolean Data types

Data is not limited to Numbers. There are other data types that are useful for other purposes in
programming and algorithms. Since we are dealing with algorithms, we should know that the
progress of an algorithm is not always linear. Sometimes we want to decide whether to do
something or not. Programmers call it conditional statements. And we want to see whether a
statement meets certain criteria or not to decide what to do next. The response of the conditional
‘question’ is a simple yes or no. in algorithms we use Boolean data to represent these responses.
Boolean values are data types which represent True (yes) or False (no) values only. If the statement
meets the criteria, the response is True, otherwise False. As you will see later, this data type is very
useful in different cases when you want to decide about something, select some objects by certain
criteria, sort objects, etc.

False
. False
True

. False
True
True )
False
False

Random

True

WO 0 -1 U bW NRER o
. . . . . . -

. True

Fig.3.13. Here | generated ten <random> values and by a <function> component | want to see if these
numbers are less than a certain <Upper_limit> or not. As you see the <function> is simply X>Y and
whenever the numbers meet the criteria, the function passes True to the <panel>.

. False
. False
. True

o MEIlEE
. True

. False
. False

Fig.3.14.a. For the next step, | used a <Modulus> component (Scalar > Operators > Modulus) to find
the remainder of the division of the Random values by <2> and | pass the result to a <function> to see
if this remainder =0 or not (f(x)=x=0), simply means whether the number is even or not. As you see
the result is another <panel> of True/False values.
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Fig.3.14.b.Here | used a <Gate And> component (Logic > Boolean > Gate And) and | attached both
<function>s to perform Boolean conjunction on them. The result is True when both input Boolean
values are True, otherwise it would be False. As you see, those numerical values which are both even
and bigger than the <Upper_limit> are meeting the criteria and pass True at the end. We will discuss
how to use these Boolean values later.

There are multiple Boolean operators on Boolean section of the Logic tab that you can use to create
your criteria and combine many of them.

(0. True

1. False

o Toggfe |T_ru.e_ }
4. Tric Aoy
\5., False

Fig.3.15. we can manually define a set of Boolean data by <Boolean> component from Params tab
under Primitive section or use <Boolean Toggle> in Special section to use one manually changeable
Boolean value.
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3_6_Cull Patterns

There are many reasons that we might want to select some of the items from a given data set and
do not apply a function to all elements. To do this we either need to select some of the specific
items from a list or omit other items. There are different ways to achieve this but let’s start with
omitting or culling lists of data.

Up to now there are two <cull> components to cull a list of data in Grasshopper. While <cull Nth>
omit every N item of the given list of data, <cull pattern> takes a pattern of Boolean values
(True/False) and cull a list of data, based on this pattern, means any item of the list that associates
with True value in Boolean list will pass and those that associate with False will omit from the list.

If the number of values in the data list and Boolean list are the same, each item of the data list being
evaluated by the same item in the Boolean list. But you can define a simple pattern of Boolean
values (like False/False/True/True which is predefined in the component) and <cull> component
would repeat the same pattern for all items of the data list.

Distance logic

| am thinking of selecting some points from a point set based on their distance to another point
(reference point). Both point set and the reference point are defined each by a <point> component.
First of all what we need is a <distance> component (Vector > Point > Distance) that measures the
distance between points and the reference. | compared these distances by a user defined number
(<number slider>) with a <F2> component. This comparison generates Boolean values as output
(True/False) to show whether the value is smaller (True) or bigger (False) than the upper limit. | am
going to use these Boolean values to feed the <Cull pattern> component (the function of <F2>
component defined as f=x>y).

As mentioned before, <Cull pattern> component takes a list of generic data and a list of Boolean
data and omits the members of the generic list of data who associate with the false value of the
Boolean list. So the output of the <Call pattern> component is a set of points that associate with
True values which means they are closer than the specified number shown on the <number slider>,
to the reference point, because the X>Y function always pass True for the smaller values. To show
them better | just connected them to the reference point by a simple line.

Fig.3.16. Selection of points from a point set based on their distance from a reference point with <Cull
pattern> component.
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Topography

Having tested the first distance logic, | am thinking of selecting some points which are associated
with contour lines on a topography model, based on their height.

Fig.3.17. Topography with points associated with contour lines.

| want to select these points based on their height. What | have is a point set which is defined by a
<point> component (named topography). | need the height of the point with the same logic as the
above example to select the specific points. Here | used a <Decompose> component (Vector > Point
> Decompose) to get the Z values of these points. | compared these values with a given number
(<number slider>) with a <F2> component to produce a list of associative Boolean values. The <Cull
pattern> component passes those who associated with the True values which means selected points
are higher than the user defined height value (the function of <F2> component defined as f=x>y).

Fig.3.18. Selected points which are higher than 4.7550 units! (A user defined value). These points are
now ready to plant your Pine trees!!!!
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Connectivity logic: Triangles

Let’s have another example of culling this time with <Cull Nth>. Imagine we have a network of points
and we want to draw lines to make triangles with a pattern like Figure.3.19.

Fig.3.19. Making triangles by a network of points.

The first step is to simply create a grid of points by <series> and <pt> components. The next step is
to find the proper points to draw lines in between. Each time we need a line starts from a point and
ends at the next point on the next column, then another line goes from there to the back column but
at the next row and final line goes back to the start point. To do this, it seems better to make three
different lists of points, one for all first points, one for all second points and another for all third
points and then draw line between them.

| can use the original points as the list for all start pints.

The first second point is the second point on the point set and then the list goes on one by one. So to
select the second points | just shifted the original list by <Shift list> component (Logic > List > Shift
list) by shift offset=1 to shift the data set by one value and make the second points list. (Go to the
<shift list> help to learn more about component). Since the original data is a set of points which
make the start points in our example, the shifted data would be the second point of the triangles (all
second points in the network).

The third point of triangles is in the same column as the start point but in next row, so | shifted the
original list of points again by shift offset=the number of columns (the value comes from the
<number slider>) to find these points for all point set and make a list of all third points.
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Fig.3.20. Selected item is the shifted points by the shift offset value of equal to the number of
columns which produces all third points of the triangles.

To complete the task | need to omit some points in each set. First of all the points in the last column
never could be first points of triangles so | need to omit them from the list of start points. The points
on the first column also never could be the second points, so | need to omit them from the list of
second points and the same for last column again as third points. So basically | attached all points’
lists each to one <Cull Nth> component which omits specific members of a data set by a number
which is cull frequency (Fig.3.17). In this case all data sets culled by the number of columns which is
clear why. So | just connected the <number slider> to each <Cull Nth> component as frequency.

Fig.3.21. Using <Cull Nth> to omit A. last column, B. first column and c. last column of the first,
second and third points’ lists.

The next step is just to feed three <line> components to connect first points to the second, then
second points to the third and finally third points to the first again.

IChapter 3
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Fig.3.22. Making lines by connecting culled lists of points to the <Line> component.

Now by changing the <number slider> you can have different grids of points which produces these
triangles accordingly.

Although there are still some problems with our design and we now that we should not start any
triangle from the points of the last row, but the concept is clear...... so let’s go further. We will come
back to this idea while talking about mesh geometries and then | will try to refine it.

IChapter 3
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3_7_2D Geometrical Patterns

Geometrical Patterns are among the exciting experiments with the Generative Algorithms and in
Grasshopper. We have the potential to design a motif and then proliferate it as a pattern which
could be used as a base of other design products and decorations. In case of designing patterns we
should have a conceptual look at our design/model and extract the simple geometry that produces
the whole shape while being repeated. So by producing the basic geometry we can copy it to
produce the pattern as large as we need (Fig.3.23).

Fig.3.23. Extracting the concept of a pattern by simple geometries.

| still insist on working on this models by data sets and simple mathematical functions instead of
other useful components just to see how these simple operations and numerical data have the great
potential to generate shapes, even classical geometries.



Fig.3.24. Complex geometries of Sheikh Lotfolah Mosque’s tile work comprises of simple patterns
which created by mathematical-geometrical calculations. Sheikh Lotfolah Mosque, Isfahan, Iran.

Simple linear pattern

Here | decided to make a simple pattern by some intersecting lines and my aim is to draw some
patterns similar to Figure.3.25.

Fig.3.25. Examples of simple concepts to make patterns.

| started my definition by a <series> which | am able to control the number of values (here points)
and the step size (here distance between points). By this <series> | generated a set of points and |
also generated another three different sets of points with different Y values which | am adjusting
them relatively by a <number slider> and <F1> components (y=-x/3, y=x, y=x/3, y=x+(x/3) if x is the
number coming from the <number slider>).
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Fig.3.26. Generating four set of points, all associated with a one <series> component which controls
the number and distance of points and another <number slider> which controls the Y value of the
point sets (I am using longest list for points data matching).

To get the “zig-zag” form of the connections | need to cull the point sets with <cull pattern> one with
True/False and another one with False/True pattern and then connect them together (Fig.3.20).

d False / True

G

Fig.3.27. Cull pattern and selected points as a base for “zig-zag” pattern.

Since | want to draw poly line on this culled point sets, | cull all point sets with the same logic and
merge these points to make a one merged stream by <merge 02> component (Logic > Streams >
Merge 02).

IChapter 3
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Fig.3.28. Cull pattern for the middle points inverted to make the mirrored pattern of the first set.

To make the second rows of points, | used the same points of the first row and merge them again
with the second row to have four merged data streams at the end. If you connect these merged data
sets to a <poly line> component you will get a z-shaped poly line and that is because the points are
not in a desired order and the <merge> component just add the second list of points at the end of
first one. So | need to sort the points in the desired way. A <Sort> component sorts some generic
data based on a sortable key. What do we have as a sortable key?

If we look at the order of the points we can see that the X dimension of the points increases
incrementally, which seems suitable as an item to sort our points with. To do this, we need to
extract the X coordinate of the points. The <decompose> component make it possible. So we
connect the X coordinate of the points as a sortable key to the <sort> component and then sort the

points with that. Finally we can use these sorted points to feed <polyline> components, make our
pattern with them (Fig.3.29).

Fig.3.29. Sorting points by their X component as key and then making polyline with them. | sorted
mirrored geometry by another <sort> component because they are from different cull pattern.
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Fig.3.30. Later on we will discuss how we could create repetitive patterns by simple components and

the way we can array the simple motif to create complex geometries.

IChapter 3
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Circular patterns

There are endless possibilities to create motifs and patterns in this associative modelling method.
Figure.3.31 shows another motif which is based on circular patterns rather than the linear one. Since
there are multiple curves which all have the same logic | will just describe one part of the algorithm
and keep the rest for you.

Fig.3.31. Circular geometrical patterns which is repeated in the second picture.

The start point of this pattern is a data set which produces a bunch of points along a circle, like the
example we have done before. This data set could be rescaled from the centre to provide more and
more circles around the same centre. | will cull these sets of points with the same way as the last
example. Then | will generate a repetitive ‘zig-zag’ pattern out of these rescaled-circular points to
connect them to each other, make a star shape curve. Overlap of these stars could make motifs and
using different cull patterns make it more interesting.

77 )

Fig.3.32. Providing a range of 0 to 2Pi and by using Sin/Cos functions, making a first set of points. The
second <number slider> changes the radius of the circle (power of the X and Y).
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Fig.3.33. Increasing the numbers of Sin/Cos functions by a <number slider> making the second set of

points with bigger radius.
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Fig.3.34. First and second circles made by points.

In order to cull the points, we can simply use the <Cull pattern> for the points and use True/False
like the last example. But how we can sort the list of points after all? If you connect the culled points
to a <poly line> component you will not get a star shape poly line but two offset polygon connected
to each other. Here | think it is better to sort the points based on their index number in the set.
Because | produced the points by a <range> component, here we need a <series> component to
provide the indices of the points in the list. The N parameter of the <range> factor defines the
number of steps of the range so the <range> produces N+1 number. | need a <series> with N+ 1
value to be the index of the points (Fig.3.34) and cull and sort these points based on their indices.
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Fig.3.35. Generating index number of the points.
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Fig.3.36. We need to cull indices and points the same and merge them together. Although the result

of the merging for <series> could be again the numbers of the whole data set, the order of them is
like the points, and so by sorting the indices as sortable keys we can sort the points as well. The only
thing remain is to feed a <polyline> component by sorted points.
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Fig.3.37. Generating Polyline by sorted points.
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Fig.3.38. Star-shaped polyline.

The same logic could be used to create a more complex geometry by simply generating other point
sets, culling them and connecting them together to finally produce patterns. We can use these
patterns as inputs for other processes and design other decorative shapes.



Fig.3.39. You can think about different possibilities of the patterns and linear geometries in
applications.

Although I insisted to generate all previous models by data sets and simple mathematical functions,
we will see other simple components that made it possible to decrease the whole process or change
the way we need to provide data.
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Fig.3.40. Final model.
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Chapter_4_Transformation

Transformations are essential operations in modelling and generating geometries. They can enable
us to get variations from the initial simple geometries. Transformations help us to scale and
orientate our objects, move, copy and mirror them, or may result in accumulation of objects, that
could be the desired model we. There are different types of transformations but to classify it, we can
divide it to main branches, the first division is linear and the second is spatial transformations. Linear
transformations perform on 2D space while spatial transformations deal with the 3D space and all
possible object positioning.

In other sense we can classify transformations by status of the initial object; transformations like
translation, rotation, and reflection keep the original shape but scale and shear change the original
state of the object. There are also non-linear transformations. In addition to translation, rotation and
reflection we have different types of shear and non-uniform scale transformations in 3D space, also
spiral and helical transformations and projections which make more variations in 3D space.

In order to transform objects, conceptually we need to move and orientate objects (or part of
objects like vertices or cage corners) in the space and to do this we need to use vectors and planes
as basic constructs of these mathematical/geometrical operations. We are not going to discuss
about basics of geometry and their mathematical logic here but first let’s have a look at vectors and
planes because we need them to work with.

Fig.4.1. Transformations provide great potential to generate forms from individuals. Nature has

some great examples of transformations in its creatures.
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4_1_Vectors and planes

Vector is a mathematical/geometrical object that has magnitude (or length) and direction and sense.
It starts from a point, go toward another points with certain length and specific direction. Vectors
have wide usage in different fields of science and in geometry and transformations as well.

Displaced A

2
(\’\
49

Point A

Fig.4.2. A: Basic elements of a Vector, B: point displacement with a vector.

Simply if we have a point and a vector, this vector could displace the point with the distance of
vector’s magnitude and toward its direction to create a new position for the point. We use this
simple concept to generate, move, scale and orientate geometries in our associative modelling
method.

Planes are another useful set of geometries that we can describe them as infinite flat surfaces which
has an origin point. Construction planes in Rhino are these types of planes. We can use these planes
to put our geometries on them and do some transformations based on their orientation and origin.
For example in the 3D space we cannot orientate an abject on a vector! but we need two vector to
make a plane to be able to put geometry on it.

Vectors have direction and magnitude while planes have orientation and origin. So they are two
different types of constructs that can help us to create, modify, transform and articulate our models.

Grasshopper has some of the basic vectors and planes as predefined components. These are
including X, Y and Z vectors and XY, XZ, and YZ planes. There are couple of other components which
we can produce and modify them which we talk about them in our experiments. So let’s jump into
design experiments and start with some of the simple usage of vectors and go step by step forward.
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4_2_On curves and linear geometries

As we have experimented with points that are 0-Dimension geometries now we can start to think
about curves as 1-Dimensional objects. Like points, curves could be the base for constructing so
many different objects. We can extrude a simple curve along another one and make a surface, we
can connect different curves together and make surfaces and solids, we can distribute any object
along a curve with specific intervals and so many other ways to use a curve as a base geometry to
generate other objects.

Displacements

We generated so many point grids in chapter 3. There is a component called <Grid rectangular>
(Vector > Point > Grid rectangular) which produces a grid of points which are connected together
make some cells also. We can control the number of points in X and Y direction and the distance

between points.

Fig.4.3. a simple <Grid Rectangular> component with its predefined values.

You can change the size of grid by a <number slider>. | want to change the Z coordinates of the
points as well. So | need to change the base plane of the grid. To do this, | introduced a <XY plane>
component (Vector > Constants > XY plane) which is a predefined plane in the orientation of the X
and Y axis and | displaced it in Z direction by a <Z unit> component (Vector > Constants > Z unit)
which is a vector along Z axis with the length (magnitude) of one. | can change the height of this
displacement by the size of the vector through a <number slider> that | connected to the input of
the <Z unit> component. So by changing the position of the <XY plane> along the Z axis the height of
the grid also changes.



Fig.4.4. Manipulated Grid (selected in green) with one <number slider> for scale of the grid and
another with a <Z unit> and <XY plane> to change the Z coordinate of the grid’s points. (Further you
can just connect the <Z> vector component to the <Grid rectangular> component and get the same
result).

Now if you look at the output of the <grid rectangular> you can see that we have access to the
whole points as well as grid cells and cell centres. | am looking for a bunch of lines that start from the
grid cells’ centre points and spread out of it to the space. Although we can simply connect these
points from the two <grid> component M part to a <line> component, the length of lines in this case
would be different. But as | want to draw lines with the same length, | need another strategy. Here, |
am going to use a <line SDL> component. This component draws a line by Start point(S), Direction
(D), and Length (L). So exactly what | need; | have the start points (cell’s midpoint), and length of my
lines. What about the direction? Since the direction of my lines are in the direction of the lines that
connect the mid points of the cells of the two grids, | am going to make a set of vectors by these to
point sets.

Fig.4.5. Making vectors from the cells midpoints of the first grid toward the cells midpoints of the
second grid by <vector 2pt> component (Vector > Vector > vector 2pt). This component makes
vectors by the start and end point of vectors.



Fig.4.6. The <line SDL> component generates bunch of lines from the grid cell midpoints that spread
out into space. | can change the length of lines by <number slider>.

RecGrid I
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Fig.4.7. By simply using an <end points> component (Curve > Analysis > End points) and using these
‘end points’ as the ‘base points’ for a set of <circle> components (Curve > Primitive > Circle) and

extruding these circles by <extrude point> component we can generate a set of cones, pointing
toward same direction and we can finish our first experiment.
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Random displacements

| decided to make a set of randomly distributed pipes (lines) with random length, woven to each
other, make a funny element. | sketched it like Figure.4.8.
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Fig.4.8. First sketches of model

There are different ways to design this model. | am thinking of making a circle as the base curve,
divide it into desire parts and then generate some random curves from these points and then make
pipes by these curves. But let’s see how we can do it in Grasshopper.

As | said, first | want to do it with a circle to divide it and create the base points. | used a <circle>
component (Curve > Primitive > Circle) and | attached a <number slider> for further changes of its
radius. Then we attach our circle to a <divide curve> component (Curve > Division > Divide curve) to
divide the circle. Again we can control the number of divisions by an integer <number slider>. The
<Divide curve> component gives me the points on the curve (as the division points). These are the
first set of points for generating our base lines.
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Fig.4.9. Dividing the base circle.

In this step, for some reasons! | want to generate these base lines in different segments. In order to
draw our first step, | need the second set of points, above the first set (to make the lines semi-
horizontal !!!l) and in a randomly distributed field. To do this, | want to make a set of random
vectors in Z direction and displace the first set of points with these random vectors. By connecting
the first and second sets of points we would have our first part of our lines.

Because | need the same amount of vectors as the base points, | used the value of the <number
slider> that controls the amount of base points (circle divisions), to generate the same amount of
random vectors. So | connect the <number slider> of <divide curve> component to a <random>
component N part to generate N random values. Then | used a <unit Z> component but | feed this
<Unit Z> vector component with the <random> component so it produces N random length vectors
in Z direction accordingly.

Random

Fig.4.10. Generating random length vectors in Z direction. The <number slider> which is connected to
the S part of the <random> component differs the random numbers as ‘seed’ of random engine.

So now we are ready to displace the points by these vectors. Just bring a <move> component (XForm
> Euclidian > Move) to the canvas. Basically a <move> component moves geometries by given
vectors. You can move one object/a group of objects with one vector/a group of vectors. Since you
still have the component of the source geometry, the <move> component works like a ‘copy’
command in Rhino. To see how these vectors displaced the points, we can use a <line> component
to see the result.
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Fig.4.11. The first set of lines that made by the randomly displaced points.

As you see in the Figure.4.11 the lines are vertical and | am looking for more random distribution of
points to make the whole lines penetrating each other. | will do it by a <jitter> component to simply
shuffle the end points.

Fig.4.12. Shuffling the end points and making totally random lines.

The rest of the process is simple. | think three segments of lines would be fine. So | just repeat the
move and shuffling concept to make second and third set of displaced points.

IChapter4



Fig.4.13. Generating 3 line segments for each path to be converted to pipes. To clean up the scene
you can uncheck the other components and just preview the lines.

Ok. We have the base geometry. Now just add a <pipe> component (Surface > Freeform > pipe) and
attach all <line> components (by holding shift key!) to the ‘base curve’ part of the component and
use a <number slider> to control the radius of pipes.

Fig.4.14. Final pipes. Uncheck the preview of lines. It speeds up your processing time.

That’s it. Now you can change the radius of the base circle to distribute the pipes in larger/smaller
areas, you can change the number of pipes (curves), you can change the random seed and pipe’s
radius. To do all and check the result you can go to the ‘View’ menu of the Grasshopper and select
‘Remote Control Panel’ to have the control panel for your adjustments which is much more easier
than the sliders inside the canvas when you want to observe the changes in Rhino scene. To
hide/Unhide the canvas, just double-click on its window title bar.
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Fig.4.15. Remote Control Panel (from view menu) and observing the changes of the model.

Fig.4.16. Although the connections of pipes need a bit more elaboration, for an experiment it is
enough.

IChapter4
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4_3 Combined Experiment: Swiss Re

Today it is very common to design the concept of towers with this associative modelling method. It
allows the designer to generate differentiated models simple and fast. There are so many potentials
to vary the design product and find the best concepts quiet quickly. Here | decided to model a tower
and | think the “Swiss Re” tower from ‘Foster and partners’ seems sophisticated enough to start, for
some modelling experiments.

Let me tell you the concept. | am going to draw a simple plan of the tower and copy it to make the
floors. Then | will rescale these floors to match the shape, and then | will make the skin of the
surface and finally the fagade’s structural elements. | will do the process with very simple geometries
for this step and also to save time.

Let’s start with floors. | know that the Swiss Re’s floors are circles that have some V-shaped cuts
around it, but | just use a simple circle to make the section of the tower. Since | know that it has 41
floors | will copy this section for 41 times In Z direction with 4 meters space in between and | will
play around the proportions because | don’t know the real dimensions, but | will try to manage it
visually.

B
plan_sectioa

IMANIININ

Fig.4.17. The <circle> component (plan_section) with radius of 20 which is copied by <move>
component along Z direction by a <Z unit> vector component for 41 times above. To get this | used a
<series> component (floors) starts from 0 and has the step size=4 with 41 values. (I renamed the
components to recognize them easily).
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Now the first thing we need is to rescale these circles to make the proper floors. | need a <scale>
component (XForm > Affine > Scale) to rescale them. The <scale> component needs the geometry to
scale, centre for scaling and the factor of scaling. So | need to feed the geometry part of it by our
floors or circles which is <move> component.

The predefined centre of scaling is the origin point, but if we scale all our floors by the origin as
centre, the height of the tower would rescale and the plane of each floor would change. So we need
the centre of rescaling at the same level at the floor level and exactly at the centre of it. So | used a
<Centre> component (Curve > Analysis > Centre) which gives me the centre of the circles. By
connecting it to the <scale> you can see that all circles would rescale in their level without
movement.

Fig.4.18. Rescaling floors from their centre point as the centre of scaling, using a <centre>
component. The scaled circles are selected in green.

Although | rescaled the whole circles the same, but we know that all floors are not in the same size,
so we need to rescale our floors different from each other; and we know that from the circle which
is grounded on earth they first become bigger up to certain height, look constant on the middle
parts and then become smaller and smaller up to the top point of the tower. So | need to provide a
list of scale factors for all floors which are 41 and again | now that this list has three different parts
that if we say starts from 1 then increases up to certain factor, then remain constant in some floors
and then decreases. If you look at Figure 4.19 you cans see the pictures that give you a sense of
these scaling factors. So basically | need to provide a list of data (41 values) which is not strait
forward this time.



Fig.4.19. Swiss Re HQ, 30 St Mary Axe, London, UK, 1997-2004, (Photos from Foster and Partners website,

http://www.fosterandpartners.com).

Scale Intervals

As | mentioned before, intervals are numeric ranges. They are real numbers from lower limit to
upper limit. Since | said real numbers, it means we have infinite numbers in between. They are
different types of usage for these mathematical domains. As we experimented before, we can divide
a numerical interval by a certain number and get divisions as evenly distributed numbers between
two numbers.

As | also mentioned that we have three different parts for the scaling factors of the tower, we need
three different set of numbers, the first and the last ones are intervals and the middle part is just a
real number which is constant. Let’s have a look at Figure 4.20. Here | used two <interval>
component (Scalar > Interval > Interval) to define two numerical range, one increasing and one
decreasing. The increasing one starts from 1 which | assumed that the ground floor is constant and
then increases up the number of the <number slider>. The second <interval> starts from <number
slider> and ends at another <number slider> which is the lower limit. By using the same <number
slider> for the middle part, | am sure that middle part of the data set is the same from both sides.
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Fig.4.20. Two <interval> components, top one increasing and the bottom one decreasing. | do this
because | don’t know the exact proportions, but this help us to discuss about more interesting stuff!

Know | have the increasing and decreasing numeric intervals, but to produce the scaling factors |
need numbers not ranges. So | am going to use <range> components to divide these numeric
intervals up to certain numbers.

Because | don’t know the projects data, still | do not know in which floor it starts to remain constant
and where it decreases. So in order to assign these factors correctly, | am going to split the floors in
two parts. | am using a <Split list> component (Logic > List > Split list) and | attach the <series>
component which | named it floors to it to split the floors in two different parts. Then | need to know
how many floors are there in each part that later on | can change it manually and correct it visually.
<List length> component (Logic > List > List length) do this for me and passes the number of items in
the list, so | know that how many floors are in the increasing scale part and how many in the
decreasing scale part.

The only remaining part is the constant floors. | just assumed that there are 8 floors which their scale
does not change and | need to omit them from the floors in the increasing and decreasing scaling
part. Since two of these floors are included in increasing and decreasing lists as the maximum scale |
need to omit another 6 floors. So | just need to get the number of the floors from <list length> and
apply (-3) function to each, to omit these 6 floors and distribute them between both two lists.

And the final trick! Since the <range> component divides the domain to N parts, it produces N+1
number at the end which means 1 more number than we need. So all together | need to add a
<function> component by (X-4) expression to reduce the number of steps that each <range>
component wants to divide its numeric range.
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Fig.4.21. Generating the scale factors.

And finally as you can see in the Figure.4.22, | merged all my data by a <merge 8> component to
make a unified list of data which is the numeric factors for the increasing parts, 6 constant number
just coming from the < number slider> (the constant factor between the two range) and the
decreasing factor. The <merge 8> component includes 41 scaling factor that now | can attach to the
<scale> component and rescale all floors.

4
d Decreasing factors

number of floors in each
part -8 floor to make them

to indicate where the constant (-4 for each range)
scaling starts to reverse

Fig.4.22. The <merge 8> component includes <range> of increasing numbers, 6 constant numbers
(which is the maximum number of the increasing and decreasing parts), and the <range> of
decreasing numbers as one unified list of data.
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Fig.4.24. Rescaled floors. Now I can change the position of the constant floors and the scaling factors
to visually match the model by the original building.

Ok! Let’s go for fagade elements.
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The steel elements around the facade are helical shapes that have the cross section like two
connected triangles but again to make it simple, | just make the visible part of it which is almost like
a triangle (in section). | want to generate these sections and then ‘loft’ them to make a surface.

| started with a <polygon> component (Curve > Primitive > Polygon). | used an <end points>
component to get the start/end points of my floors. By attaching these points as the base for
<polygon> | can generate couple of polygons on the start points of my floors. | attached a <number
slider> to the <polygon> to control its radius and | set the number of segments to 3 manually. |
renamed the <scale> component to the <rescaled_floors>.

rescaled_floor:

Saogret
S

Fig.4.25. Polygons positioned on the facade.

Now | want to make the helical transformation for the polygons. For some reasons | think that every
floors rotate for 5 degree! So | need to rotate all polygons for 5 degree around the centre of the
floors. So | brought a <rotate> component to the canvas (XForm > Euclidian > Rotate). Geometry is
my <polygon> and the base of rotation is the centre of the floors / <centre> of circles. To produce
the rotation angle | need a list of incremental factors that each time adds 5 degree. So | used a
<series> starts from 0 with the step size of 5 and with 41 values which come from the floors and
number of <polygon> also. The only thing remain is because <rotate> component works with Radian
| need to convert Degree to Radian by a <function> which is Radian=Degree * Pi / 180 (There is a
predefined function called RAD(x) that converts degree to radian also. Check the functions library).
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Fig.4.26. Rotating the polygons around the centre of floors, each for 5 degree from the previous one.

Now just use a <loft> component to make a surface by connecting all these sections together. To
make the scene clean, uncheck the preview of any unnecessary geometry.

As you can see, we don’t have the top point of the tower because we don’t have any floor there. We
know that the height of tower is 180m. So | added a simple <point> component (0, 0, 180) to the
canvas and | attached it to the <polygon> component (by holding shift). So the <polygon>
component produces another polygon at the top point of the tower and the number of polygons

becomes 42. So | changed the <series> component to produce 42 numbers as well. | know that the
top part of the “Swiss Re” is more elegant than this model but for our purpose this is fine.
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Fig.4.27. one of the facade elements made by the <loft> component.
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To generate these elements all around the building, | am using a <rotate> component which |
attached the <loft> object as source geometry and | used a <range> from 0 to 2Pi divided by a
<number slider> as the number of elements, to rotate it all around the circle. Since the centre of
rotation is the Z axis at the centre of the tower, and it is pre-defined on the component, | do not
need to change it or introduce any plane for rotation.
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Fig.4.28. first set of spiral elements around the tower.
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Fig.4.29. | need to <mirror> (XForm > Euclidian > Mirror) the rotated geometry by <YZ plane> (Vector
> Constants > YZ plane) to have the lofted elements in a mirrored helical shape. So at the end | have a
lattice shape geometry around the tower.
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Glass cover

To cover the whole tower simply with glass, | should go back to the floors component and <loft>
them. Again since we don’t have any floor at the top point of the tower, | used another <circle>

component and | feed it by the top point as the position and | attached it to the <loft> object to
make the loft surface complete up to top point.

radius

rescaled_floor

Final_ci

c[addm_q the top point seperately ])

Fig.4.30.a. lofting floor curves to make the fagade’s glass cover.

Fig.4.30.b. The lofted surface covers the whole facade. In the Swees Re project, there is two colours

of glass. If once we decided to make this effect, we can use facade structure to produce different
surfaces and render them differently.



4.31. Final model. Although it is not exactly the same, but for a sketch model in a short time, it would
work.
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4 4 On Attractors

“Attractor is a set of states of a dynamic physical system toward which that system tends to evolve,
regardless of the starting conditions of the system. A point attractor is an attractor consisting of a
single state. For example, a marble rolling in a smooth, rounded bowl will always come to rest at the
lowest point, in the bottom center of the bowl; the final state of position and motionlessness is a
point attractor.”

Fig.4.32. Strange Attractor.

In the case of design and geometry, attractors are elements (usually points but could be curves or
any other geometry) that affect the other geometries in the space, change their behaviour and make
them displace, re-orientate, rescale, etc. They can articulate the space around themselves and
introduce fields of actions with specific radius of power. Attractors have different applications in
parametric design since they have the potential to change the whole objects of design constantly.
Defining a field, attractors could also affect the multiple agent systems in multiple actions. The way
they could affect the product and the power of attractors are all adjustable. We go through the
concept of attractors in different occasions so let’s have some very simple experiments first.
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Point Attractors

| have a grid of points that | want to generate a set of polygons on them. | also have a point that |
named it <attractor_1> and | draw a <circle> around it just to realize it better. | want this
<attractor_1> affects all my <polygon>s on its field of action. It means that based on the distance
between each <polygon> and the <atractor_1>, and in the domain of the <attractor_1>, each
<polygon> respond to the attractor by change in its size.
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Fig.4.33. Base <point_grid> and the <polygon>s and the <attractor_1>.

The algorithm is so simple. Based on the <distance> between <attractor_1> and the <Pt-grid>, | want
to affect the radius of the <polygon>, so the ‘relation’ between attractor and the polygons define by
their distance. | need a <distance> component to measure the distance between <attractor_1> and
the polygon’s center or <pt_grid>. Because this number might become too big, | need to <divide>
(Scalar > Operators > Division) this distance by a given number from <number slider> to reduce the
power of the <attractor_1> as much as | want.

Fig.4.34. <Distance> divided by a number to control the ‘power’ of the <attractor_1>. | also made a
Cluster by <attractor_1> and its <circle> to have one component as attractor in the canvas. You can
convert any group of related geometries to clusters by selecting them and using ‘make cluster from
selection’ from the canvas toolbar (or Arrange menu or Ctrl+G).
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Now if you connect this <div> component to the Radius (R) part of the <polygon> you can see that
the radius of polygons increases when they go farther from the <attractor_1>. Although this could
be good for the first time, we need to control the maximum radius of the polygons, otherwise if they
go farther and farther, they become too big, intersecting each other densely (it also happens if the
power of the attractor is too high). So | control the maximum radius value of the polygons manually.
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Fig.4.35. By using a <minimum> component (Scalar > Util > Minimum) and a user defined number, |
am telling the algorithm to choose the value from the <div> component, if it is smaller than the
number that | defined as a maximum radius by <number slider>. As you can see in the pictures, those
polygons that are in the power field of attractor being affected and others are constant.

Now if you change the position of the <attractor_1> in the Rhino workplace manually, you can see
that all polygons get their radius according to the <attractor_1> position.
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Fig.4.36. The effect of the <attractor_1> on all polygons. Displacement of the attractor, affects all
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Fig.4.37. Wiyh the same concept, | can displace polygons in Z direction based on the numbers coming
from the <Min> component or changing it by mathematical functions, if necessary.

Simple. | can do any other function on these polygons like rotate, change colour, etc. But let’s think
what would happen if | would have two attractors in the field. | made another cluster which means
another point in Rhino associated with a <point> and <circle> in Grasshopper.

It seems that the first part of the algorithm is the same. Again | need to measure the distance
between this <attractor_2> and the polygons’ center or <pt_grid> and then find the <min> of these
distances and the previously defined maximum number for the radius.

Fig.4.38. Introducing second <attractor_2> to and applying the same algorithm to it.

Now we have two different data lists that include the distance from the polygon to each attractor.
Since the closer attractor would affect the polygon more, | should find one which is closer, and use
that one as the source of action. So | will use a <min> component to find which distance is minimum
or which point is closer.
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4.39. Finding the closer attractor. After finding the closer one by <min> component, the rest of the
process would be the same. Now all <polygon>s are being affected by to attractors.
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Fig.4.40. Again you can change the position of the attractors and see how all polygons reacting
accordingly.

We can have more and more attractors. The concept is to find the attractor which is closer for each
polygon and apply the effect by selecting that one. Selection in terms of distance happens with
<min> functions, but we will talk about other types of selection later.

There are other ways of dealing with attractors like using <cull> component. In this method you
need to provide different lists of data from the distance between points and attractors and then
culls those far, select the closer one by simple Boolean function of a>b. since there are multiple
examples on this topic on-line, | hope you will do them by yourself.
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Curve Attractors: Wall project

Let’s complete this discussion with another example but this time by Curve attractors because in so
many cases you need to articulate your field of objects with linear attractors instead of points.

My aim here is to design a porous wall for an interior space to let me have a multiple framed view to
the other side. This piece of work could be cut from sheet material. In my design space, | have a
plane sheet (wall), two curves and bunch of randomly distributed points as base points of cutting
shapes. | decided to generate some rectangles by these points, cutting them out of the sheet, to
make this porous wall. | also want to organize my rectangles by this two given curve so at the end,
my rectangles are not just some scattered rectangles, but randomly distributed in accordance to
these curves which have a level of organisation in macro scale and controlled randomness in micro
scale.

What | need is to generate this bunch of random points and displace them toward the curves based
on the amount of power that they receive from these lines. | also decided to displace the points
toward both curves so | do not need to select closer one, but | displace the points based on their
distance to the curve. Then | want to generate my rectangles over these points and finally 1 will
define the size of these rectangles in relation to their distance to the attractors.

number_pt |

Fig.4.41. Generating a list of randomly distributed <point>s and introducing the attractors by two
<curve> component (Params > Geometry > Curve) over a sheet. | used an <interval> component to
define the numeric interval between 0 and <number slider> for the range of random points. | will
make a cluster by <interval>, <random>, <jitter> and <point> to make the canvas more manageable.



Fig.4.42. When the attractor is a point, you can simply displace your geometry towards it. But when
the attractor is a curve, you need to find a relative point on curve and displace your geometry
towards that specific point. And this point must be unique for each geometry, because there should
be a one to one relation between attractor and any geometry in the field. If we imagine an attractor
like a magnet, it should pull the geometry from its closest point to the object. So basically what | first
need is to find the closest point of <Rnd_pt_grid> on both attractors. These points are the closest
points on the attractors for each member of the <Rnd_Pt Grid> separately. | used <Curve CP>
component (Curve > Analysis > Curve CP) which gives me the closest point of the curve to my
<Rnd_Pt_Grid>.
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Fig.4.43. In order to displace the points towards the attractors, | need to define a vector for each
point in <Rnd_Pt_Grid>, from the point to its closest point on the attractors. Since | have the start
and end point of the vector | am using a <vector 2Pt> component to do that. The second point of the
vector (B port of the component) is the closest point on the curve.
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Fig.4.44. Now | connected all my <Rnd_Pt Grid> to two <move> components to displace them
towards the attractors. But if | use the vector which | created in the last step, it displaces all points
onto the curve and that’s not what | want. | want to displace the points in relation to their distance to
the attractor curves. If you look at the <Curve CP> component it has an output which gives us the
distance between the point and the relevant closest point on the curve. Good. We do not need to
measure the distance by another component. | just used a <Function 2> component and | attached
the distance as X and a <number slider> to Y to divide the X/Log(Y) to control the factor of
displacement (Log function change the linear relation between distance and the resulting factor for
displacement).

| just used a <multiply> component (Vector > Vector > Multiply), | attached the <vector 2P>as base
vector and | changed its size by the factor | created by distance, and | attached the resulting vector
to the <move> components which displaces the <Rnd_Pt_Grid> in relation to their distance to the
attractors, and towards them.



76 | Transformations

Fig.4.45. The <number slider> changes the power with which attractors displace objects towards

themselves.
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Fig.4.46. | used a <rectangle> component and | attached the <move>d or displaced points to it as the
base point (planes) for my rectangle components. But as | told you, | want to change the size of the
<rectangle>s based on their distances to each <attractor>. So | used the same numerical values which
I used for vector magnitude and | changed them by two functions. | divided this value by 5 for the X
value of the rectangles and | divided by 25 for the Y value. As you can see, rectangles have different
dimensions based on their original distance from the attractor.

Fig.4.47. Manipulating the variables would result in differentiated models that | can choose the best
one for my design purpose.
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Fig.4.48. Different shadow effects of the final design product as a porous wall system.



Fig.4.49. Final design product.
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Chapter_ 5_Parametric Space

Our survey in Geometry looks for objects in the space; Digital representation of forms and tectonics;
different articulation of elements and multiple processes of generations; from classical ideas of
symmetry and pattern up to NURBS and curvature continuity.

We are dealing with objects. These objects could be boxes, spheres, cones, curves, surfaces or any
articulation of them. In terms of their presence in the space they generally divided into points as
O-dimensional, curves as 1-dimensional, surfaces as 2-dimensional and solids as 3-dimensional
objects.

We formulate the space by coordinate systems to identify some basic properties like position,
direction and measurement. The Cartesian coordinate system is a 3 dimensional space which has an
Origin point 0=(0,0,0) and three axis intersecting at this point which make the X, Y and Z directions.
But we should consider that this 3D coordinate system also includes two - dimensional system - flat
space (x, y) - and one dimension-linear space (x) - as well. While parametric design shifts between
these spaces, we need to understand them as parametric space a bit.

5_1_0One Dimensional (1D) Parametric Space

The X axis is an infinite line which has some numbers associated with different positions on it. Simply
x=0 means the origin and x=2.35 a point on the positive direction of the X axis which is 2.35 unit
away from the origin. This simple, one dimensional coordinate system could be parameterised in any
curve in the space. So basically not only the World X axis has some real numbers associated with
different positions on it, but also any curve in the space has the potential to be parameterized by a
series of real numbers that show different positions on the curve. So in our 1D parameter space
when we talk about a point, it could be described by a real number which is associated with a
specific point on the curve we are dealing with.

It is important to know that since we are not working on the world X axis any more, any curve has its
own parameter space and these parameters does not exactly match the universal measurement
systems. Any curve in the Grasshopper has a parameter space starts from zero and ends in a positive
real number (Fig.5.1).
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Fig.5.1. 1D-parameter space of a curve. Any ‘t’ value is a real number associated with a position on
the curve.

So talking about a curve and working and referencing some specific points on it, we do not need to
always deal with points in 3D space with p=(X,Y,Z) but we can recall a point on a curve by p=t as a
specific parameter on it. And it is obvious that we can always convert this parameter space to a point
in the world coordinate system. (Fig.5.2)

Fig.5.2. 1D-parmeter space and conversion in 3D coordinate system.
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5_2 Two Dimensional (2D) Parametric Space

Two axis, X and Y of the World coordinate system deals with the points on an infinite flat surface
that each point on this space is associated with a pair of numbers p=(X,Y). Quite the same as 1D
space, here we can imagine that all values of 2D space could be traced on any surface in the space.
So basically we can parameterize a coordinate system on a curved surface in the space, and call
different points of it by a pair of numbers here known as UV space, in which P=(U,V) on the surface.
Again we do not need to work with 3 values of (X,Y,Z) as 3D space to find the point and instead of
that we can work with the UV “parameters” of the surface. (Fig.5.3)

Fig.5.3. UV (2D) parameter space of surface.

These “Parameters” are specific for each surface by itself and they are not generic data like the
World coordinate system, and that’s why we call it parametric! Again we have access to the 3D
equivalent coordinate of any point on the surface (Fig.5.4).

Fig.5.4. Equivalent of the point P=(U,V) on the world coordinate system p=(X,Y,Z).
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5 3 Transition between spaces

It is a crucial part in parametric thinking of design to know exactly which coordinate system or
parameter space we need to work with, in order to design our geometry. Working with free form
curves and surfaces, we need to provide data for parameter space but we always need to go back
and forth for the world coordinate system to provide data for other geometry creations or
transformations etc. It is almost more complicated in scripting, but since Grasshopper has a visual
interface rather than code, you simply identify which sort of data you need to provide for your
design purpose.

Consider that it is not always a parameter or a value in a coordinate system that we need in order to
call geometries in Generative Algorithms and Grasshopper, sometimes we need just an index
number to do it. If we are working with a bunch of points, lines or whatever, and they have been
generated as a group of objects, like point clouds, since each object associated with a natural
number that shows its position in a list of all objects, we just need to call the number of the object as
index instead of any coordinate system. The index numbering like array variables in programming is
a 0-based counting system which starts from 0 (Fig.5.5).

Fig.5.5. Index number of a group of object is a simple way to call an on object. This is 0-based
counting system which means numbers start from 0.

So as mentioned before, in Associative modelling we generate our geometries step by step as some
related objects and for this reason we go into the parameter space of each object and extract
specific information of it and use it as the base data for the next steps. This could be started from a
simple field of points as basic generators and ends up at the tiny details of the model, in different
hierarchies.



5 4 Basic Parametric Components

5 4 1 Curve Evaluation

The <evaluate> component is the function that can find the point on a curve or surface, based on the
parameter you feed. The <evaluate curve> component (Curve > Analysis > Evaluate curve) takes a
curve and a parameter (a number) and gives back a point on curve on that parameter.

Fig.5.6. The evaluated point on <curve> on the specific parameter which comes from the <number
slider>.

Fig.5.7. We can use <series> of numbers as parameters to <evaluate> instead of one parameter. In
the above example, because some numbers of the <series> component are bigger than the domain of
the curve, you see that <Evaluate> component gives us warning (becomes orange) and that points
are located on the imaginary continuation of the curve.
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Fig.5.8. Although the ‘D’ output of the <curve> component gives us the domain of the curve

(minimum and maximum parameters of the curve), alternatively we can feed an external <curve>
component from Param > Geometry and in its context menu, check the Reparameterize section. It
changes the domain of the curve to 0 to 1. So basically | can track all <curve> long by a <number
slider> or any numerical set between 0 and 1 and not be worry that parameter might go beyond the
numerical domain of the curve.

There are other useful components for parameter space on curves on Curves > Analysis and Division
that we talk about them later.

5 4 2 Surface Evaluation

While for evaluating a curve we need a number as parameter (because curve is a 1D-space) for
surfaces we need a pair of numbers as parameters (U, V), with them, we can evaluate a specific
point on a surface. We use <evaluate surface> component (Surface > Analysis > Analysis) to evaluate
a point on a surface on specific parameters.

We can simply use <point> components to evaluate a surface, by using it as UV input of the
<Evaluate surface> (it ignores Z dimension) and you can track your points on the surface just by X
and Y parts of the <point> as U and V parameters.
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Fig.5.9. A point <Evaluate>d on the <surface> base on the U,V parameters coming from the <number
slider> with a <point> component that make them a pair of Numbers. Again like curves you can check
the ‘Reparameterize’ on the context menu of the <surface> and set the domain of the surface 0 to 1
in both U and V direction. Change the U and V by <number slider> and see how this <evaluated>
point moves on the surface (I renamed the X,Y,Z inputs of the component to U,V,- manually).

Fig.5.10. Since we can use <point> to <evaluate> a <surface> as you see we can use any method that
we used to generate points to evaluate on the <surface> and our options are not limited just to a pair
of parameters coming from <number slider>, and we can track a surface with so many different
ways.

Fig.5.11. To divide a surface (like the above example) in certain rows and columns we can use <Divide
surface> or if we need some planes across certain rows and columns of a surface we can use <surface
frame> both from Surface tab under Util section.
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5_5_On Object Proliferation in Parametric Space

For so many design reasons, designers now use surfaces to proliferate some other geometries on
them. Surfaces are flexible, continues two dimensional objects that prepare a good base for this
purpose. There are multiple methods to deal with surfaces like Penalisation, but here | am going to
start with one of the simplest one and we will discuss about some other methods later.

We have a free-form surface and a simple geometry like a box. The question is, how we can
proliferate this box over the surface, in order to have a differentiated surface i.e. as an envelope, in
that we have control of the macro scale (surface) and micro scale (box) of the design separately, but
in an associative way.

In order to do this, we should deal with this surface issue by dividing it to desired parts and generate
our boxes on these specific locations on the surface and readjust them if we want to have local
manipulation of these objects.

Generating the desired locations on the surface is easy. We can divide surface or we can generate
some points based on any numerical data set that we want.

About the local manipulation of proliferated geometries, again we need some numerical data sets
which could be used for transformations like rotation, local displacement, resize, adjustment, etc.

-Free-Form Surface
from Rhino Workplace
-Reparameterized !

Numeric domain
\ from O to 1 p

Fl

Fig.5.12. A free-form, reparameterized, <surface> being <evaluate>d by a numeric <range> from 0 to
1, divided by 30 steps by <number slider> in both U and V direction. (Here you can use <divide
surface> but | still used the <point> component to show you the possibilities of using points in any
desired way).



Fig.5.13. As you see the <evaluate> component gives ‘Normal’ and ‘plane’ of any evaluated points on

the surface. | used these frames to generate series of <box>es on them while their sizes are being
controlled by <number slider>s.

In order to manipulate the boxes locally, | just decided to rotate them, and | want to set the rotation
axis the Y direction of the coordinate system so | should use the XZ plane as the base plane for their
rotation (Fig.5.13).

———
Base Surface

~

\ Local Rotation

e
|_ X Manipulated Box

Fig.5.14. Local rotation of the box.

Fig.5.15. The <rotate> component needs ‘geometry’ which | attached <box>es and ‘rotation angle’
that | used random values (you can rotate them gradually or any other way) and | set the Number of
random values as much as boxes. Finally to define the plane of axis, | generated <XZ plane>s on any
point that | <evaluate>d on the <surface> and | attached it to the <rotate> component.



90

Parametric Space

Fig.5.16. Final geometry.

IChapter 5



91

Non-uniform use of evaluation

During a project this idea came to my mind that why should | always use the uniform distribution of
the points over a surface and add components to it? Can | set some criteria and evaluate my surface
based on that and select specific positions on the surface? Or since we use the U,V parameter space
and incremental data sets (or incremental loops in scripting) are we always limited to a rectangular
division on surfaces?

There are couple of questions regarding the parametric tracking a surface but here | am going to
deal with a simple example to show how in specific situations we can use some of the U,V
parameters of a surface and not a uniform rectangular grid over it.

Social Space

| have two Free-form surfaces as covers for a space and | think to make a social open space in
between. | want to add some columns between these surfaces but because they are free-form
surfaces and | don’t want to make a grid of columns, | decided to limit the column’s length and add
as many places as possible. | want to add two inverted and intersected cone as columns in this space
just to make the shape of them simple.

Fig.5.17. Primary surfaces as covers of the space.
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Fig.5.18. | introduced surfaces to Grasshopper by <srf_top> and <srf_bottom> and | Reparameterized
them. | also generated a numerical <range> between 0 and 1, divided by <number slider>, and by
using a <point> component | <evaluate> these surfaces at that <points>. Again just to say that still it
is the same as surface division.

Fig.5.19. | generated bunch of <line>s between all these points, but | also measured the distance

between any pair of points (we can use line length also), as | said | want to limit these lines by their
length.



Fig.5.20. Here | used a <dispatch> component (Logic > Streams > Dispatch) to select my lines from the
list. A <dispatch> component needs Boolean data which is associated with the data from the list to
sent those who associated with True to the A output and False one to the B output. The Boolean data
comes from a simple comparison function. In this <function> | compared the line length with a given
number as maximum length of the line (x>y, x=<number slider>, y=<distance>). Any line length less
than the <number slider> creates a True value by the function and passes it through the <dispatch>
component to the A output. So if | use the lines coming out the output of the <dispatch> | am sure
that they are all less than the certain length, so they are my columns.

Fig.5.21. The geometry of columns is just two inverted cones which are intersecting at their tips. Here
because | have the axis of the column, | want to draw to circles at the end points of the axis and then
extrude them to the points on the curve which make this intersection possible.
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Fig.5.22. By using an <end points> component | can get the both ends of the column. So | attached
these points as base points to make <circle>s with given radius. But you already know that these
circles are flat but our surfaces are not flat. So | need to <project> my circles on surfaces to find their
adjusted shape. So | used a <project> component (Curve > Util > Project) for this reason.

4 <srf_bottom> |)

Fig.5.23. The final step is to extrude these projected circles towards the specified points on column’s
axis (Fig.5.20). So | used <extrude point> component (Surface > Freeform > Extrude point) and |
connected the <project>ed circles as base curves. For the extrusion point, | attached all columns’ axis
to a simple <curve> component and | ‘Reparameterized’ them, then | <evaluate>d them in two
specific parameter of 0.6 for top cones and 0.4 for bottom cones.
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Fig.5.24. Although in this example, again | used the grid based tracking of the surface, | used
additional criteria to choose some of the points and not all of them uniformly.

Fig.5.25. Final model.
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Chapter_6_ Deformation and Morphing

6_1_Deformation and Morphing

Deformation and Morphing are among the powerful functions in the realm of free-form design. By
deformations we can twist, shear, blend, ... geometries and by Morphing we can deform geometries
from one boundary condition to another.

Let’s have a look at a simple deformation. If we have an object like a sphere, we know that there is a
bounding-box (cage) around it and manipulation of this bounding-box could deform the whole
geometry.

Fig.6.1. Deformation by Bounding-box (cage).

Based on different manipulations, we might call it shear or blend or free deformation. For any
deformation function, we might need the whole bounding-box, or just one of its sides as a plane or
even one of the points to deform. If you check different deformation components in Grasshopper
you can easily find the base geometrical constructs to perform the deformations.

Morphing in animation means transition from one picture to another smoothly or seamlessly. Here
in 3D space it means deformation from one state or boundary condition to another. The Morphing
components in Grasshopper work in the same fashion. There are two <morph> components, one
deform an object from a reference box (Bounding Box) to a target box, the other component works
with a surface as a base on that you can deform your geometry, on the specified domains of the
surface and height of the object.
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The first one is <Box Morph> and the next one is <Surface Morph> both from XForm tab under the
Morph section. Since we have couple of commands that deform a box, if we use these deformed
boxes as target boxes then we can deform any geometry in Grasshopper by combination with Box
Morph component.

As you see in Figure.6.2 we have an object which is introduced to Grasshopper by a <Geometry>
component. This object has a bounding-box around it which | draw here just to visualize the
situation. | also draw another box by manually feeding values.

(p———

B3 otoo0 |

Fig.6.2. Object and manually drawn box.

Fig.6.3. The <Box morph> component (XForm > Morph > Box morph) deforms an object from a
reference box to a target box. Because | have only one geometry | attached it as a bounding box or
reference box to the component but in other cases, you can use <Bounding box> component (Surface
> Primitive > Bounding box) to use as the source box. | unchecked the preview of the <Box>
component to see the morphed geometry better.



Fig.6.4. Now if you simply change the size of the target box you can see that the morphed geometry
would change accordingly.

Fig.6.5. here you see that instead of one box, if | produce bunch of boxes, we can start to morph our
object more and more. As you see the differentiated boxes by the <series> component in their Y
dimension, show the differentiation in the morphed object as well.

6_2_On Panelization

One of the most common applications of the morphing functions is Panelization. The idea of
panelization comes from the division of a free-form surface geometry into small parts especially for
fabrication issues. Although free-form surfaces are widely being used in car industry, it is not an easy
job for architecture to deal with them in large scales. The idea of panelization is to divide a surface
into small parts which are easier to fabricate and transport and also more controllable in the final
product. Sometimes the reason is to divide a curve surface into small flat parts and then get the
curvature by the accumulation of the flat geometries which could be then fabricated from sheet
materials. There are multiple issues regarding the size, curvature, adjustment, etc. that we try to
discuss some of them.
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Let’s start with a simple surface and a component as the module to make this surface.

Fig.6.7. The component that | want to proliferate on the surface....... Not special, just for example 11!

Fig.6.8. First of all, we need to introduce our surface and module as Grasshopper components. Based
on the possible components in the Grasshopper, the idea is to generate couple of boxes on the
surface and use these boxes as target boxes and morph or module into them. So | used the <box
morph> and | used the geometry itself as bounding-box. Now we need to generate our target boxes
to morph the component into them.
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Fig.6.9. The component that we need to make our target boxes is <surface box> (XForm > Morph >
Surface box). This component generates multiple boxes over a surface based on the intervals on the
surface domain and height of the box. So I just attached the surface to it and the result would be the
target boxes for the <box morph> component. Here | need to define the domain interval of the boxes,
or actually number of boxes in each U and V direction of the surface.

U nurmber

v_number

Fig.6.10. Now | connected <divide interval2> which tells the <surface box> that how many divisions in
U and V directions we need. Another <number slider> defines the height of the target boxes which
means height of the morphed components.

So basically the whole idea is simple. We produce a module (a component) and we design our
surface. Then we make certain amount of boxes over this surface (as target boxes) and then we
morph the module into these boxes. After all we can change the number of elements in both U and
V direction and also change the module which updates automatically on the surface.
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Fig.6.11. Final surface made up of our base module

6_3 Micro Level Manipulations

Although it is great to proliferate a module over a surface, it still seems a very generic way of design.
It is just a ‘bumpy’ surface. We know that we can change the number of modules, or change the
module by itself, but still the result is a generic surface and we don’t have local control of our
system.

Now | am thinking of making a component based system that we could apply more local control over
the system and avoid designing generic surfaces which are not responding to any local, micro scale
criteria.

In order to introduce the concept, let’s start with a simple example and proceed towards a more
practical one. We used the idea of attractors to apply local manipulations to a group of objects. Now
I am thinking to apply the same method to design a component based system with local
manipulations. The idea is to change the components size (in this case, their height) based on the
effect of a (point) attractor.

IChapter 6
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Slider

Fig.6.12. A double-curve surface introduced as <Base_Srf> and a cone which is introduced as
<component> to the Grasshopper, a <divide interval’> for surface divisions, and a <bounding box> as
the reference box of the <component>. Here | used a <scale> component for my bounding box. Now if
I change the size of the bounding box, | can change the size of all components on the <base_srf>
because the reference box has changed.

As you have seen, the <surface box> component has the height input which asks for the height of
the boxes in the given intervals. The idea is to use relative heights instead of constant one. So
instead of a constant number as height, we can make a relation between the position of each box in
relation to the attractor’s position.

What | need is to measure the distance between each box and the attractor. Since there is no box
yet, | need a point on surface at the center of each box to measure the distance.

Fig.6.13. Here | used the same <divide interval’> for an <Isotrim> component (Surface > Util >
Isotrim). This component divides the surface into sub-surfaces. By these sub-surfaces | can use
another component which is <BRep Area> (Surface > Analysis > BRep area) to actually use the by-

product of this component that is ‘Area Centroid’ for each sub-surface. | measured the distance of
these points (area centroids) from the <attractor> to use it as the reference for the height of the
target boxes in <surface box> component.
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Fig.6.14. | just divided the distances by a given number to control the effect of the attractor and |
used the result as ‘height’ to generate target boxes with <surface box> component. The surface
comes from the <base_srf>, the <divide interval’> used as surface domain and heights coming from
the relation of box position and the attractor. As you see, the height of boxes now differ, based on
the position of the point attractor.

Fig.6.15. The only remaining part, connecting the <component>, <scale>d bounding box and <surface
box> to a <morph box> component and generate the components over the surface. By changing the
scale factor, you can change the size of the all components and like always, the position of the
attractor is also manually controllable.



105 || beformation and Morphing

Fig.6.16. Final model.

As you see, the size of components started to accept local manipulations, based on an external
property which is here a point attractor. Although the idea is a simple attractor, the result could be
interesting and you could differentiate your reference boxes in so many other ways as well. Now we
know that the morphing concept and panelization is not always generic. Having tested the concept,
let’s go for another practical experiment.

IChapter 6
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6_4_On Responsive Modulation

The idea for the next step is to modulate a given surface with control over each module, means any
module of this system, has to be responsible for some certain criteria. So even more than regional
differentiation of the modules, here | want to have a more specific control over my system by given
criteria. These could be environmental, functional, visual or any other associative behaviour that we
want our module be responsible for.

In the next example, in order to make a building’s envelope more responsive to the host
environment, | just wanted the system be responsive to the sun light. In your experiments it could
be wind, rain or internal functions or any other criteria that you are looking for.

Here | have a surface, simply as the envelope of a building which | want to cover with two different
types of components. One which is closed and does not allow the penetration of the sun light and
the other has opening. These components should be proliferated over my envelope based on the
main direction of the sun light at the site. | set a user defined angle to say the algorithm that for the
certain degrees of sun light we should have closed components and for the others, open ones.

The Grasshopper definition does not have anything new, but it is the concept that allows us to make
variation over the envelope instead of making a generic surface. Basically when the surface is free-
form and it turns around and has different orientations, it also has different angles with the main
sun light at each part. So based on the angle differentiation between the surface and the sun light,
this variation in the components happens to the system.

Fig.6.17.First sketches of responsive modules on facade system.

IChapter 6
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Fig.6.18. Surface of the building as envelope.

Fig.6.19. Two different types of components for building envelope.

IChapter 6
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direction of the sun-light
I which is defined by a line

Base surface
with Divisions
inUand vV

directions

Fig.6.20. The first step is similar to the previous experiments. | introduces <surface> and | used
<divide interval’> to divide it in U and V directions and | generated target boxes by <surface box>. |
also used the <isotrim> with the same intervals and | used <BRep area> to find the centroid of each
area (which is selected in green). At the same time | used a <curve> component to introduce the main
sun-light angle of the site and whit its <end points> | made a <vector 2pt> which specify the direction
of the sun light. You can manipulate and change this curve to see the effect of sun light in different
directions on components later on.

Base surface
with Divisions
inUand V
directions

| farget boxes )

Fig.6.21. in order to evaluate the angle between the sun-light and the surface, | want to measure this
angle between sun light and normals of the surface at the position of each component. So | can
decide for each range of angles what sort of component would be useful. So after generating the
center points, | need normals of the surface at those points. that’s why | used a <surface CP> to find
the closest point of each center point on the surface to get its UV parameters and use these
parameters to <evaluate> the surface at that points to actually get the normals of surface at that

points.

IChapter 6
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Fig.6.22. | used an <angle> component (Vector > Vector > Angle) to evaluate the angle between the
sun direction and the facade. Then | converted this angle to degree and | used a <function> to see
whether the angle is bigger than the <max_angle> or not. This function (x>y) gives me Boolean data,
True for smaller angles and False for bigger angles.

0. False .
max_angle 1. False
2. True
3. False
4. True
- - 5. True
evaluation / 6. True
comparisoh with )
the maximum angle

SBox I

c| target boxes ])

Fig.6.23. Based on the Boolean data comes from the angle comparison, | <dispatch> the data which
are target boxes (I have the same amount of target box as the center points and normals). So
basically | divided my target boxes in two different groups whose difference is the angle they receive
the sun light.
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The rest of the algorithm is simple and like what we have done before. | just need to morph my
components into the target boxes, here for two different ones.
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Fig.6.24. Here | introduced two different components as single geometries and | used two <morph
box> components each one associated with one part of the <dispatched> data to generate <C _close>

or <C_open> components over the facade.

those panels that have:
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Bigger angle > for open component
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6.25. Now if you look closer, you can see that in different parts of the facade, based on its curvature
and direction, different types of components are generated.
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Fig.6.26. Final model. The bifurcation of the target boxes (and the components) could be more than
two in the algorithm. It depends on the design and the criteria that we use.

We can think about a component based fagade, in which some components are closed, and some of
them are open, in which open ones have adjustable parts that orientate towards external forces,
and have apertures that adjust themselves to the internal functions of the building and so on and so
forth. You see that the idea is to have module based control over the system. We still have the
global control (form) and regional control (affecting components height or scale regionally) over the
system as well.

IChapter 6
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Chapter 7_NURBS Surface and Meshes

We have had some experiments with surfaces in the previous chapters. We used Loft and Pipe to
generate some surfaces. We also used free form surface and some surface analysis accordingly.
Usually by surfaces, we mostly mean Free-Form surfaces which we generate them by curves or
sometimes bunch of points. So usually generating surfaces depends on the curves that we provide
for our surface geometries. There are multiple surface components in the Grasshopper and if you
have a little bit of experience in working with Rhino you should know how to generate your surface
geometries by them.

Surface geometries seems to be the final products in our design, like facades, walls etc. and that’s
why we need lots of effort to generate the data like points and curves that we need as the base
geometries and finally surfaces. Here | decided to design a very simple schematic building just to
indicate that the multiple surface components in the Grasshopper have the potential to generate
different design products by very simple basic constructs.

7_1_Parametric NURBS Surfaces

In the areas of Docklands of Thames in London, close to the Canary Wharf, where the London’s high
rises have the chance to live, there are some potential to build some towers. | assumed that we can
propose one together, and this design could be very simple and schematic, here just to test some of
the basic ideas of working with free-form surfaces. Let’s have a look at the area.

Fig. 7.1. Arial view, Canary Wharf, London (image: www.maps.live.com, Microsoft Virtual Earth).
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The site that | have chosen to design my project is in the bank of Thames, with a very good view to
the river and close to the entrance square to the centeral part of Canary Wharf (Westferry Road).

| don’t want to go through the site specifics so let’s just have a look at where | am going to propose
my tower and continue with the geometrical issues.

I

site of the
proposal

1
(ElEE TR ina|plel 2008l Warnzatt

Fig.7.2. Site of the proposed tower.

Manual drawings

There are multiple ways to start this sketch. | can draw the ground floor and copy it and start to add
detail like what we have done for Swiss Re. Another way is to draw some boundary curves for the
tower and use this curves as base geometry for the building volume and then add more details to
complete the sketch. | would prefer the second way since we already know about the first one.

| am going to draw the boundary curves in Rhino. | can draw these lines in Grasshopper but because
| want them to match the geometry of the site so | need some data from the site which | can get in
this way.

| have a vague idea in mind. My tower has some linear elements in facade which are generic, but |
also want to have some hollow spaces between the outside and inside, positioned on the facade.

| also want to design a public space close to the river and connected to the tower with the same
elements as fagade, continuous from tower towards the river bank.



Fig.7.3. The basic lines of the tower associated with the site.

As you see in the Figure.7.3 | have drawn my base curves manually in Rhino. These curves
correspond to the site specifics, height limitations, site’s shape and borders, etc, etc. four curves
drawn for the main building and another two curves as the borders of the public space, which
started from the earth level and then went up to be parallel to the tower edges. These curves are
very general. You could draw whatever you like and go for the rest of the process.

Basic facade elements
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Fig.7.4. For the first step | imported these four corner curves into Grasshopper by <curve>
components and then | used <divide curve> to divide these curves into <N_div> parts.
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Fig.7.5. Now | have the same amount of division points on each curve and | draw <line> between

each curve’s points and the next one, so basically | generated <

edges.

n, | generated surfaces across facade which reminds me Mies high-rises but in a

Fig.7.6. By connecting these <line>s to <extrude> component (Surface > Freeform > Extrude) and

extrusion in Z directio
differentiated way!
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plan
curves

Fig.7.7. There are four straight lines that connect the four corners of the tower in plan. | introduced
these lines by another four <curve> components and | generated four surfaces as general facade
surfaces that could be glass. Here because | have the planner section curve and two curves that
define the boundary of the facade on each face, | used a <Sweep 2> component to use Rails for
making a surface by a section curve. So basically after | attached each <Crv_p_n> to the <Sweep2>
component as the section curve, | attached the corner curves as the rails to make each face’s surface.
For each section curve in the plan, | used two edge curves that start from its end points. So the order
is <crv_1> and <crv_2> for the <crv_p_1> and so on.

Fig.7.8. Using tower’s edge curves as Rails to make facade surfaces behind the ribs shaped facade
elements that we made before.
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Fig.7.9. With the same method, | just divided another two curves that | have drawn for the public
space and | attached them to a line component to generate some lines as the base geometry for
extrusion. | will attach it to the same <extrude> component as the facade (don’t forget to hold the
Shift key when you want to add a new component to the input of an already existing component).

Fig.7.10. Now you can alter the corner curves if you like, the number of divisions and the height of
extrusion to get the best schematic design.
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Local changes

Up to this point you already know that how to design this tower with differentiation and gradual
changes across the facade elements. Here | designed very generic surface elements and the only
parameters that make the global differentiations are edge curves of the tower. Now | want to add
some elements to make some local changes in these generic elements to show how you can change
the behaviour of these elements you designed.

As you see, the main element in our case is some lines that | generated between division points of
the edge curves and then | extruded them to make the fagade elements. There are many ways that
you can change and manipulate these lines and then extrude them, so you can get different forms
outside, and different spaces inside.

Here | decided to add some hollow spaces between these elements and make the facade with these
general linear elements with locally omitted parts as the combination of general and local design
effects.

To add these hollow spaces, | want to add them manually as solids to the tower and then subtract
them from the already existing forms. As an example | want to add some very simple ellipsoids to
the facade, and randomly distribute them alongside the its face. These ellipsoids could be added by
a certain spatial criteria but here the aim is just to explore modelling properties and techniques and |
don’t want to go further in design issues.

Fig.7.11. As you can see, | randomly added some ellipsoids o the tower that could be special hollow
spaces in the building. | will do it for all surfaces of the tower.
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Fig.7.12. after distributing all ellipsoids alongside the facade surfaces now | import them to the
Grasshopper by <Geometry> components and for each side of the facade | use one <geometry>
component and introduce them as ‘Set multiple Geometries’. So each side of the facade has one
group of ellipsoid geometries.

Fig.7.13. By using a <Trim with BReps> component (Curve > Util > Trim with BReps) | can trim these
lines across the facade by these randomly distributed ellipsoids. The output of the component are
curves inside the BRep or outside it and | use the outside curves to extrude with the same <extrude>
component that | generated before. | hide all geometries in Rhino and uncheck the preview in
Grasshopper to see the result better. | will do it for all faces and | will connect the output curves to
the extrude component.
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Fig.7.14. Now the facade elements are all have their trimmed ellipsoids inside.

The next step is to add these hollow spaces to the fagade surface as well. The process is simple. | just
need to find the difference between these ellipsoid geometries and facade surfaces. The only point

is that the direction of the normal of the surface affects the ‘difference’ command so you should be
aware of that and if needed, change this direction.

Fig.7.15. The <Solid difference> component (Intersect > Boolean > Solid difference) takes two
different solids and performs solid difference on them. So | attached the fa¢ade surface and hollow
geometries to find the difference of them. As | told you here | also used <Flip> component (Surface >
Util > Flip) to flip the Normal of the surface and then attach it to the <Solid difference> component
otherwise the hollow space would face the inside of the tower. | will do it for all surfaces of the
tower.
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Fig.7.16. All trimmed facade surfaces.

Now you only need to burn your geometries, cap the tower and render it to complete your sketch.
Again | should mention here that this was just an example to show that how you can generate series
of elements and differentiate them in global and local scale with surface components.
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Fig.7.17.a/b. Final model.
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7_2_Mesh vs. NURBS

Up to now we have used different components that worked with the NURBS surfaces. But as
mentioned before there are other types of surfaces which are useful in other contexts. It is not
always the smooth beauty of the NURBS that we aimed for, but we might need more precise control,
easier processing or simpler equations. Beside the classical surface types of revolution, ruled or
pipes, we have different free form surfaces like Besier or B-Splines. But here | am going to talk a little
bit about meshes which are quiet different types of surfaces.

Meshes are another type of free-form surfaces but made up of small parts (faces) and accumulation
of these small parts makes the whole surface. So there is no internal, hidden mathematical function
that generates the shape of the surface, but these faces define the shape of the surface all together.

If we look at a mesh, first we see its faces. Faces could be triangle, quadrant or hexagon. By looking
closer we can see a grid of points which make these faces. These points are basic elements of the
mesh surface. Any tiny group of these points (for example any three in triangular mesh) make a face
with which the whole geometry become surface. These points are connected together by straight
lines.

There are two important issues about meshes: position of these points and the connectivity of these
points. The position of the points related to the geometry of the mesh and the connectivity of the
points related to the topology.

7 2 1 Geometry and Topology

While the geometry deals with the position of the stuff !! in the space, topology deals with their
relations. Mathematically speaking, topology is a property of the object that transformation and
deformation cannot change it. So for instance circle and ellipse are topologically the same and they
have only geometrical difference. Have a look at Figure 7.20. As you see there are four points which
are connected to each other. In the first image, both A and B have the same topology because they
have the same relation between their points (same connection). But they are geometrically
different, because of the displacement of one point. But in the second image, the geometry of points
is the same but the connectivity is different and they are not topologically equivalent.

CATAT VK

Fig.7.20. Topology and Geometry.
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The idea of topology is very important in meshes. Any face in the mesh object has some corner
points and these corner points are connected to each other with an order in a same way for all faces
of the mesh object. So we can apply any transformation to a mesh object and displace the vertices of
the mesh in the space even non-uniformly, but the connectivity of the mesh vertices should be
preserved to remain the faces otherwise it collapses.

Fig.7.21. A: Both red and grey surfaces are meshes with the same amount of faces and vertices, but
in the gray one, the vertices are just displaced, make another geometrical configuration of the mesh,
but the connectivity of the mesh object is not changed and both surfaces are topologically the same.

B: Two Mesh surfaces are geometrically the same and have the same amount of vertices but
connectivity of vertices are different, faces are triangular in the gray one but quad in the red, make
different topology for them.

Knowing the importance of topological aspects of mesh objects, they are powerful geometries while
we have bunch of points and we need a surface type to represent them as a continuous space.
Different types of algorithms that working with points could be applied to the mesh geometry since
we save the topology of the mesh. For instance, using finite element analysis or specific applications
like dynamic relaxation, and particle systems, it is easier to work with meshes than other types of
surfaces since the function can work with mesh vertices.

Mesh objects are simple to progress and faster to process; they are capable of having holes inside
and discontinuity in the whole geometry. There are also multiple algorithms to refine meshes and
make smoother surfaces by mesh objects. Since different faces could have different colours initially,
mesh objects are good representations of analysis purposes (by colour) as well.

There are multiple components that dealing with the mesh objects in ‘mesh’ tab in Grasshopper.
Let’s start a mesh from scratch and then try to grow our knowledge.
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7_3 On Particle Systems

| have a group of points and | want to make a surface by these points. In this example the group of
points is simplified in a grid structure. To discuss the basic concept of the ‘particle systems’ here |
will try to project this idea on a mesh geometry in a simple example.

| am thinking of a vertical grid of points that represent the basic parameters of a surface which is
being affected by an imaginary wind pressure. | want to displace the points by this wind factor (or
any force that has a vector) and represent the resultant deformed surface. Basically by changing the
wind factor, we can see how the surface changes.

(Actually | want to deal with a surface geometry and an extra force that applies to this surface, with
each point as a particle separately, and observe the result with changes of the main force)

Fig.7.22. The first step is simple. By using a <series> component with controlled number of points
<N_pt>, and distance between them <distance_pt> | generated a grid of cross referenced <point>s.

The pressure of the imaginary wind force, affects all points in the grid but | assumed that the force of
the wind increases when goes up, so the wind pressure become higher in the higher Z values of the
surfaces. And at the same time, the force affects the inner points more than the points close to the
edges. The points on the edges in the plan section do not move at all (fix points). In particle system
there is a relation between particles as well, and we should define another set of rules for them, but
here | just set the external forces just to show how we can work with points as particles.
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Fig.7.23. Diagram of the wind force affected the surface. A: section; the vertical effect of the force, B:
plan; the horizontal effect.

Basically | need two different mechanisms to model these effects, one for the section diagram and
another for the plan. | simplified the mechanism to an equation just to show the way we want the
force affects points. For the first mechanism, to produce points displacements by using (X*2) while X
is the Z value of the point being affected by the force. So for each point | need to extract the Z
coordinate of the point.

To make everything simple, | just assumed that the force direction is in the Y direction of the world
coordinate system. So for each point on the grid, | need to generate a vector in Y direction and | set
its force by the number that | receive from the first equation. For the second diagram we need a bit
more of an equation to do. Let’s have a look at part one first.

force vector, increasing by Z value
(first mechanism)

x"2)/Y
x= Z coordinate of the poinf
Y= <number slider> to control the effect

Fig.7.24. The Z coordinate of the point extracted by a <decompose> component and then powered by
(x"2) and then divided by a given <number slider> just to control the movement generaly. The result
is a factor to <multiply> the vector (Vector > Vector > Multiply) which is simply a world <unit Y>
vector as force. So basically | generated force vectors for each point in the grid.
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force vector, increasing by Z value
(first mechanism)

Fig.7.25. If | displace the points by these vectors you can see the resultant grid of points that satisfy
the first step of this modelling.

Now if we look at the second part of the force modelling, as | said, | assumed that in the planner
section, the points on the edge are fixed and the points on the middle displaced the most. Figure
7.26 show this displacement for each row of the point grid.

Fig.7.26. Displacement of points in rows (planner view).

Since | have the force vectors for each point, | need to control them and set a value again, to make
sure that their displacement in the planner section is also met the second criteria. So for each row of
the points in the grid, | want to generate a factor to control the force vector’s magnitude. Here |
assumed that for the points in the middle, the force vector’s power are maximum that means what
they are, and for the points on the edges, it become zero means no displacement and for the other
points a range in between.

IChapter 7
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Fig.7.27. For the second mechanism, | need a <range> of numbers between 0 and 1 to apply to each
point; O for the edge, 1 for the middle. | need a range from 0 to 1 from one edge to the middle and
then from 1 to 0 to go from the middle to the other edge. | need this <range> component generates
values as half of the numbers of points in each row. | set the <N_pt> to the even numbers, and |
divided it by 2, then minus 1 (because the <range> component takes the number of divisions and not
number of values). You see the first <panel> shows four numbers from 0 to 1 for the first half of the
points. then | <reverse>d the list and | merge these two list together and as you see in the second
<panel> | generated a list from 0 to 1 to 0 and the number of values in the list is the same as number
of points in each row.

The final step is to generate these factors for all points in the grid. So | <duplicate>d the points as
much as <N_pt> (number of rows and columns are the same). Now | have a factor for all points in the
grid based on their positions in their rows.
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force vector, increasing by Z value
(first mechanism)

Fig.7.28. Now I need to <multiply> the force vector again by the new factors. If | displace the points
by these new vectors, we can see how two different mechanisms affected the whole point grid.
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Actually this part of the example needed a little bit of analytical thinking. In reality, methods like
Particle spring systems or Finite Element Analysis use this concept that multiple vectors affecting the
whole points in the set and points affecting each other also. So when you apply a force, it affects the
whole points and points affecting each other simultaneously. These processes should be calculated
in iterative loops to find the resting position of the whole system. Here | just make a simple example
without these effects of particle systems and | just want to show a very simple representation of
such a system dealing with multiple forces which in real subjects are a bit more complicated!

c{ final displaced point grid ])

(| G

G

Fig.7.29. Mesh generation. Now if you simply add a <mesh> component (Mesh > Primitive > Mesh) to
the canvas and connect the displaced points to it as vertices, you will see that nothing happening in
the scene. We need to define the faces of the mesh geometry to generate it. Faces of the mesh are
actually a series of numbers who just defines the way these points are connected together to make
the faces of the surface. So here vertices are the geometrical part of the mesh but we need the
topological definition of the mesh to generate it.

Every four corner point of the grid, define a quadrant face for the mesh object. If we look at the
point grid, we see that there is an index number for each point in the grid. We know each point by
its index number instead of coordinates in order to deal with its topology.
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Fig.7.30. Index number of points in the grid.

To define the mesh faces, we need to call every four corners that we assumed to be a face and put
them together and give them to the <mesh> component to be able to make the mesh surface. The
order of this points in each face is the same for all faces.

Fig.7.31. In a given point grid, a simple quadrant face defined by the order of points that if you
connect them by a polyline, you can make the face. This polyline starts from a point in the grid, goes
to the next point, then goes to the same point of the next row and then goes to the back column
point of that row, and by closing this polyline, you will see the first face of the mesh finds its shape.
Here the first face has points [0,1,6,5] in its face definition. The second face has [1,2,7,6] and so on.

IChapter 7
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To define all mesh faces, we should find the relation between these points and then make an
algorithm that generates these face matrices for us.

If we look at the face matrix, we see that for any first point, the second point is the next in the grid.
So basically for each point (n) in the grid, the next point of the face is (n+1). Simple!

For the next point of the grid, we know that it is always shifts one row, so if we add the number of
columns (c) to the point (n) we should get the point at the next row (n+c). So for instance in the
above example we have 5 columns so c¢=5 and for the point (1) the next point of the mesh face is
point (n+c) means point (6). So for each point (n) as the first point, while the second points is (n+1),
the third point would be (n+1+c). That’s it.

For the last point, it is always stated in one column back of the third point. So basically for each point
(n+1+c) as the third point, the next point is (n+1+c-1) which means (n+c). So for instance for the
point (6) as the third point, the next point becomes point (5).

All together for any point (n) in the grid, the face that starts from that single point has this points
as the ordered list of vertices: [n, n+1, n+1+c, n+c] while (c) is the number of columns in the grid.

15

10 11 12 13 &

Fig.7.32. After defining all mesh faces, the mesh can be generated.

Looking at the mesh vertices, there is a bit more to deal with. If you remember the ‘Triangle’
example of chapter_3, there was an issue to select the points that could be the first points in the
grid. If you look at the grid of points in the above example, you see that the points on the last
column and last row could not be the start points of any face. So beside the fact that we need an
algorithm to generate the faces of the mesh object, we need a bit of data management to generate
the first points of the whole grid and pass these first points to the algorithm and generate mesh
faces.
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So basically in the list of points, we need to omit the points of the last row and last column and then
start to generate face matrices. To generate the list of faces, we need to generate a list of numbers
as the index of points.

N R < ,3.-——:———.-———-;-——L.
s

Fig.7.33. Generating the index number of the first points in the grid with a <series> component. The
number of values in the series comes from the <N_pt> as the number of columns (same as rows) and
by using a function of < x * (x-1)> | want to generate a series of numbers as <columns*(rows-1)> to
generate the index for all points in the grid and omit the last row. The next step is to <cull> the index
list by the number of columns (<N_pt>) to omit the index of the last columns as well.
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Fig.7.34. Final index number of the possible first points of the mesh faces in the grid (with 8 points in
each column).
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4 final displaced point grid ])

_

Fig.7.35. A <Mesh quad> component (Mesh > Primitive > Mesh quad) is in charge of generating quad
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faces in Grasshopper. | just attached the list of first numbers to the first point of the <quad>.

Now this is the time to generate the list of indices for the faces:

4 final displaced point grid ')

Fig.7.36. While (x) is the index of the first point (<cull> list) and (y) is the number of the columns(from
<N_pt> number slider), the second point is (x+1), the third point is ((x+1)+y) (the index of second point
+ number of columns), and the last point is ((x+1+y)-1) (the index of the third point -1).
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Fig.7.37. The resultant mesh.

Fig.7.38. Changing the parameters, related to the force and manipulating the mesh.

7_4_0n Colour Analysis

To finish this example, let’s have a look at how we can represent our final mesh with colours as a
medium for analysis purposes. There are different components in the Grasshopper that provide us
colour representations and these colours are suitable for our analysis purpose.

Here in this example, again to bring a concept, | simply assumed that at the end, we want to see the
amount of deviation of our final surface from the initial position (vertical surface). | want to apply a
gradient of colours start from the points which remained fix with bottom colour up to the points
which has the maximum amount of deviation from the vertical position with the higher colour of the
gradient.

IChapter 7
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Simply, to find the amount of deviation, | need to measure the final state of each point to its original
state. Then | can use these values to assign colour to the mesh faces base on these distances.

4 final displaced point grid ])

Fig.7.39. If | simply go back, | have the initial point grid that we generated in the first step and | have

also the final displaced point grid that | used to generate the mesh vertices. | can use a <distance>
component to measure the distance between the initial position of the point and its final position to
see the deviation of the points.

ci final displaced point grid ])

Fig.7.40. For our analysis purpose | want to use a <Gradient> component (Params > Special >
Gradient) to assign gradient of colours to the mesh. | attached my <distance> values to the
parameter part (t) of the <Gradient> and | attached it to the Colour input of the <mesh> component.

But to complete the process | need to define the lower limit and upper limit of gradient range (LO
and L1). Lower limit is the minimum value in the list and upper limit is maximum value in the list and
other values are being divided in the gradient in between.

To get the lower and upper limit of the list of deviations | need to simply sort the data and get the
first and last values in that numerical range.
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>

Fig.7.41. By using a <sort> component to sort the distances, | get the first item of the data list (index=
0) as lower limit and the last one (index= <list length> - 1) as the upper limit of the data set (deviation
values) to connect to the <gradient> component to assign colours based on this range.

Gradient Editor

Bl Misc ; P
Colour in L Yellow
Colour out 1 Yellow

Factor

Fig.7.42. By clicking on the small colour icon on the corner of the <gradient> component we can

change the colours of the gradient.
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Fig.7.43. Right-click on the component and on the context pop-up menu you have more options to
manipulate your resultant colours. Different types of colour gradient to suit the graphical

representation of your analysis purpose.

Fig.7.44.a/b. Different gradient thresholds.
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7_5_Manipulating Mesh objects as a way of Design

Depends on the object and purpose of the modelling, | personally prefer to get my mesh object by
manipulating a simple mesh geometry instead of generating a mesh from scratch since defining the
point set and face matrices are not always simple and easy to construct. By manipulating, | mean
that we can use a simple mesh object, extract its components and change them and then again
make a mesh with varied vertices and faces. So | do not need to generate points as vertices and
matrices of faces. Let’s have a look at a simple example.

Fig.7.45. In this example, | simply used a <mesh plane> component and | extracted its data by using a
<mesh components> to have access to its vertices and faces. Then | displaced vertices along Z
direction by random values powered by a <number slider> and again attached them to a <mesh>
component to generate another mesh. Here | also used a <cull pattern> component and | omitted
some of the faces of original mesh and then | used them as new faces for making another mesh. The
resultant mesh has both geometrical and topological difference wih its initial mesh and can be used
for any design purpose.

This idea of geometrically manipulating the vertices and topologically changing the faces has so
many different possibilities that you can use in your design experiments. Since mesh objects have
the potential to omit some of their faces and still remain as surface, different design ideas like

porous surfaces could be pursued by them.

Fig.7.46. Resultant manipulated mesh (just a random case).
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Fig.7.47.a/b. Final model.
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Chapter_8_Fabrication

Today there is a vast growing interest on material practice and fabrication in combination with
Computer Aided Manufacturing. Due to the changes have happened in design processes, it seems a
crucial move and one of the ‘Musts’ in the field of design. Any design decision in digital area, should
be tested in different scales to show the ability of fabrication and assembly. Since it is obvious that
the new design processes and algorithms do not fit into the traditional building processes, designers
now try to use the modern technologies in fabrication to match their design products. From the
moment that CNC machines started to serve the building industry up to now, a great relation
between digital design and physical fabrication have been made and many different technologies
and machineries being invented or adjusted to do these types of tasks.

In order to design building elements and fabricate them, we need to have a brief understanding of
the fabrication processes for different types of materials and know how to prepare our design
outputs for them. This is the main purpose of the fabrication issues in our design process. Based on
the object we designed and material we used, assembly logic, transportation, scale, etc. we need to
provide the suitable data from our design and get the desired output of that to feed machineries.

If traditional way in realization of a project made by Plans, Sections, Details, etc. today, we need
more details or data to transfer them to CNC machines, to use them as source codes and datasheets
for industries and so on.

The point here is that the designer should provide some of the required data, because it is highly
interconnected with design object. Designer sometimes should use the feedback of the fabrication-
data-preparation for the design readjustment. Sometimes the design object should be changed in
order to fit the limitations of the machinery or assembly.

Up to this point we already know different potentials of the Grasshopper to alter the design, and
these design variations could be in the favour of fabrication as well as other criteria. | just want to
open the subject and touch some of the points related to the data-preparation phase, to have a look
at different possibilities that we can extract data from design project in order to fabricate it or
sometime readjust it to fit the fabrication limitations.
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8 1 Datasheets

In order to make objects, sometimes we simply need a series of measurements, angels, coordinates
and generally numerical data. There are multiple components in Grasshopper to compute the
measurements, distances, angels, etc. the important point is the correct and precise selection of the
objects that we need to address for any specific purpose. We should be aware of any geometrical
complexity that exits in the design and choose the desired points for measurement purposes. The
next point is to find the positions that give us the proper data for our fabrication purpose and avoid
to generate lots of tables of numerical data which could be time consuming in big projects but
useless at the end. Finally we need to export the data from 3D software to the spreadsheets and

datasheets for further use.

Paper_strip_project

The idea of using paper strips attracted me for some investigations, although it had been tested
before (like in Morpho-Ecologies by Hensel and Menges, 2008). To understand the simple assemblies
| started with very simple combinations for first level and | tried to add these simple combinations
together as the second level of assembly. It was interesting in the first tries but soon it became out
of order and the result object was not what | assumed. So | tried to be more precise to get the more
delicate geometries at the end.

Fig.8.1. Paper strips, first try.
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In the next step | tried to make a very simple set up and understand the geometrical logic and use it
as the base for digital modelling. | assumed that by jumping into digital modelling | would not be
able to make physical model and | was sure that | need to test the early steps with paper.

My aim was to use three paper strips and connect them, one in the middle and another two in two
sides with longer length, restricted at their ends to the middle strip. This could be the basic module.

Fig.8.2. simple paper strip combination to understand the connections and move towards digital
modelling.

Digital modelling

Here | wanted to model the paper strip digitally after my basic understanding of the physical one.
From the start point | need a very simple curve in the middle as the base of my design and | can
divide it and by culling these division points (true, false) and moving (false ones) perpendicular to the
middle curve and using all these points (true ones and moved ones) as the vertices for two
interpolated curves | can model this paper strips almost the same as what | described.

Fig.8.3.a/b. First modelling method with interpolated curves as side strips.

IChapter 8



145

But it seemed so simple and straightforward. So | wanted to add a gradual size-differentiation in
connection points so it would result in a bit more complex geometry. Now let's jump into
Grasshopper and continue the discussion with modelling there. | will try to describe the definition
briefly and go to the data parts.

reparameterized
initial curve as
middle strip

parameters
alongside a
reparameterized
curve

changing the
distribution of the

parame ters
(parabola graph type)

Fig.8.4. The <curve> component is the middle strip which is a simple curve in Rhino. | reparameterized
it and | want to evaluate it in the decreasing intervals. | used a <range> component and | attached it
to a <Graph Mapper> component (Params > Special > Graph Mapper). A <Graph mapper> remaps a
set of numbers in many different ways and domains by choosing a particular graph type. As you see, |
evaluated the curve with this <Graph mapper> with parabola graph type and the resultant points on
the curve are clear. You can change the type of graph to change the mapping of numeric range (for
further information go to the component help menu).
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finding the parameters af the midpoints on curve
(between each point and the next one)

excluding 1 from fist |y
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Fig.8.5. After remapping the numerical data | evaluated the middle curve with two different
<evaluate> components. First by simply attach it to the data from <graph mapper> as basic points.
Then | need to find the midpoints. Here | find the parameters of the curve between each basic point
and the next one. | <shift>ed the data to find the next point and | used <dispatch > to exclude the last
item of the list (exclude 1) otherwise | would have one extra point in relation to the <shift>ed points.
The <function> component simply find the parameter in between ( f(x)=(x+y)/2 ) and you see the
resultant parameters being evaluated.

{rapons

[(Power_deviaton | MEE R d vector to the curve %

4 increasing the power of Z vector ]) at the parameter
T ~

Fig.8.6. Now | want to move the midpoints and make the other vertices of the side strips.
Displacement of these points must be always perpendicular to the middle curve. So in order to move
the points | need vectors, perpendicular to the middle curve at each point. | already have the Tangent
vector at each point, by <evaluate> component. But | need the perpendicular vector. We now that
the Cross product of two vectors is always a vector perpendicular to both of them (Fig.8.7). For
example unit Z vector could be the cross product of the unit X and Y vectors. Our middle curve is a
planer curve so we now that the Z vector at each point of the curve would be always perpendicular to
the curve plane. So if | find the cross product of the Tangent of the vector and Z vector at each point,
the result is a vector perpendicular to the middle curve which is always lay down in the curve’s plane.
So I used Tangent of the point from <evaluate> Component and a <unit Z> vector to find the <XProd>
of them which | know that is perpendicular to the curve always. Another trick! | used the numbers of
the <Graph Mapper> as the power of these Z vectors to have the increasing factors for the
movements of points, in their displacements as well, so the longer the distance between points, the
bigger their displacements.
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Fig.8.7. Vector cross product. Vector A and B are in base plane. Vector C is the cross product of the A
and B and it is perpendicular to the base plane so it is also perpendicular to both vectors A and B.

<[ main curve points ];.
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Fig.8.8. Now | have both basic points and moved points. | <merge>d them together and | sorted them
based on their (Y) values to generate an <interpolate>d curve which is one of my side paper strip. (If
you manipulate your main curve extremely or rotate it, you should sort your points by the proper

factor).
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interpolated curves as side strips _],

Fig.8.9. Using a <Mirror Curve> component (XForm > Morph > Mirror Curve) | can mirror the
<interpolate>d curve by middle <curve> so | have both side paper strips.

Fig.8.10. Now if | connect middle curve and side curves to an <extrude> component | can see my first
paper strip combination with decreasing spaces between connection points.

Fig.8.11. | can simply start to manipulate the middle strip and see how Grasshopper updates the
three paper strips which are connecting to each other in six points.
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After | found the configuration that | wanted to make a paper strip model, | needed to extract the
dimensions and measurements to build my model with that data. Although it is quiet easy to model
all these strips on paper sheets and cut them with laser cutter but here | like to make the process
more general and get the initial data needed to build the model, so | am not limited myself to one
specific machine and one specific method of manufacturing. You can use this data for any way of
doing the model even by hand !!ll as | want to do in this case to make sure that | am not
overwhelmed by digital!

By doing a simple paper model | know that | need the position of the connection points on the strips
and it is obvious that these connection points are in different length in left_side_strip,
right_side_strip and middle_strip. So if | get the division lengths from Grasshopper | can mark them
on the strips and assemble them.

Since strips are curve, the <distance > component does not help me to find the measurements. |
need the length of curve between any two points on each strip. When | evaluate a parameter on a
curve, it gives me its distance from the start point as well. So | need to find the parameter of the
connection points of the strips (curves) and evaluate the position of them for each curve and the
<evaluate> component would give me the distance of the points from the start point of curve means

positions of connection points.

0. 0.0922918952
1. 1.2121518337
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0.0
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Fig.8.12. Although my file became a bit messy | replaced some components position on canvas to
bring them together. As you see | used the first set of points that | called them ‘main curve points’ on
the middle strip (initial curve). These are actually connection points of strips. The (L) output of the
component gives me the distances of connection points from the start points of the middle strip. |
used these points to find their parameter on the side curves as well (<curve cp> component). So |
used these parameters to evaluate the side curve on those specific parameters (connection points)
and find their distances from the start point. | can do the same to find the distance of the connection
points on the other side strip (<mirror>ed one) also. At the end, | have the position of all connection
points in each paper strip.
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Make sure that the direction of all curves should be the same otherwise you need to change the
direction of the curve or if it affects your project, you can simply add a minus component to minus
this distances from the curve length which mathematically inverses the distance and gives you the
distances of points from the start point instead of end point (or vice versa).

Exporting Data
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\ A Sans Serif (humanist)
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Disconnect All
Disconnect 3
@ Help..

Fig.8.13. Right-click on the <panel> component and click on the ‘stream contents’. By this command
you would be able to save your data in different formats and use it as a general numeric data. Here |
would save it with simple .txt format and | want to use it in Microsoft Excel.
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Fig.8.14. On the Excel sheet, simply click on an empty cell and go to the ‘Data’ tab and under the ‘Get
External Data’ select ‘From Text’. Then select the saved txt file from the address you saved your
stream content and follow the simple instructions of excel. These steps allow you to manage your
different types of data, how to divide your data in different cells and columns etc.
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Home Insert Page Layout
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4 _ 19.58672443
5 | 29.67631788
6 _ 36.85098694
7 | 43.05035896
B _ 47.79526826
9 | 49.61551546

Fig.8.15. Now you see that your data placed on the Excel data sheet. You can do the same for the rest

of your strips.
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14

15 Connection point distances from start point
16 T e
17 start point 0 0] 0

18 1st connection point 19.58672443 | 14.4975078S | 18.71121037
19 2nd connection point 29.67631788 | 21.19712374 | 28.22812292
20 3rd connection point 36.85098694 | 26.84307638 | 34.95597765
21 4th connection point 43.05035896 | 32.67167999 | 41.0266449
22 5th connection point 47.79526826 | 37.38037429 | 45.75826257
23 end point_(strip length)| 49.61551546 | 39.20023423 | 47.57834643
24

Fig.8.16. Table of the connection points alongside the strip.

If you have a list of 3D coordinates of points and you want to export them to the Excel, there are
different options than the above example. If you export 3D coordinates with the above method you
will see there are lots of unnecessary brackets and commas that you should delete. You can also add
columns by clicking in the excel import text dialogue box and separate these brackets and commas
from the text in different columns and delete them but again because the size of the numbers are
not the same, you will find the characters in different columns that you could not align separation
lines for columns easily.

In such case | simply recommend you to decompose your points to its components and export them
separately. It is not a big deal to export three lists of data instead of one.
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5. {6.1336081597, 0.9636090785, 14.880042856)

Fig.8.17. Using <decompose> component to get the X, Y and Z coordinates of the points separately to
export to a data sheet.
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You can also use the ‘Format()’ function to format the output text, directly from a point list in
desired string format. You need to define your text in way that you would be able to separate
different parts of the text by commas in separate columns in datasheet.

Enough for modelling! | used the data to mark my paper strips and connect them together. To prove
it even to myself, | did all the process with hand !!!! to show that fabrication does not necessarily
mean laser cutting (HAM, as Achim Menges once used for Hand Aided Manufacturing!!!l). | just
spent an hour to cut and mark all strips but the assembly process took a bit longer which should be
by hand anyway.
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Fig.8.18.a/b/c. Final paper-strip project.
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8 2 Laser Cutting and Cutting based Fabrication

The idea of laser cutting on sheet materials is very common these days to fabricate complex
geometries. There are different ways that we can use this possibility to fabricate objects. Laser
cutter method suits the objects that built with developable surfaces or folded ones. One can unfold
the digital geometry on a plane and simply cut it out of a sheet and fold the material to build it. It is
also suitable to make complex geometries that could be reduced to separate pieces of flat surfaces
and one can disassemble the whole model digitally in separate parts, nest it on flat sheets, add the
overlapping parts for connection purposes (like gluing) and cut it and assemble it physically. It is also
possible to fabricate double-curve objects by this method. It is well being experimented to find
different sections of any ‘Blob’ shaped object, cut it at least in two directions and assemble these
sections together usually with Bridle joints and make rib-cage shaped models.

Since the laser cutter is a generic tool, there are other methods also, but all together the important
point is to find a way, to reduce the geometry to flat pieces to cut them from a sheet material, no
matter paper or metal, cardboard or wood and finally assemble them together (if you have Robotic
arm and you can cut 3D geometries it is something different!).

Among the different ways discussed here | want to test one of them in Grasshopper and | am sure
that you can do the other methods based on this experiment easily.

Free-form surface fabrication

| decided to fabricate a free-form surface to have some experiments with preparing the nested parts
of a free-form object to cut and all other issues we need to deal with.

Fig.8.19. Here | have a surface and | introduced this surface to Grasshopper as a <Geometry>
component, so you can introduce any geometry that you have designed or use any Grasshopper
object that you have generated.

Sections as ribs

In order to fabricate this generic free-form surface | want to create sections of this surface, nest
them on sheets and prepare the files to be cut by laser cutter. If the object that you are working on
has a certain thickness then you can cut it but if like this surface you do not have any thickness you
need to add a thickness to the cutting parts.
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Fig.8.20. In the first step | used a <Bounding Box> component to find the area that | want to work on.
Then by using an <Explode> component (Surface > Analysis > BRep components) | have access to its
edges. | selected the first and second one (index 0 and 1) which are perpendicular to each other.

Slider

Fig.8.21. In this step | generated multiple perpendicular frames alongside each of selected edges. The
number of frames is actually the number of ribs that | want to cut.

Slider

Fig.8.22. Closer view of frames generated alongside the length and width of the object’s bounding
box. As you see | can start to cut my surface with this frames.

IChapter 8



157 | Fabrication

| object for |
fabrication

Fig.8.23. Now if | find the intersections of these frames and the surface (main geometry), | actually
generated the ribs base structure. Here | used a <BRep | Plane> section component (Intersect >
Mathematical > BRep | Plane) to solve this problem. | used the <Geometry> (my initial surface) as
BRep and generated frames, as planes to feed the section component.

surface

sections

Fig.8.24. Intersections of frames and surface, resulted in series of curves on the surface.
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Nesting

The next step is to nest these curve sections on a flat sheet to prepare them for the cutting process.
Here | drew a rectangle in Rhino with my sheet size. | copied this rectangle to generate multiple
sheets overlapping each other and | drew one surface that covers all these rectangles to represent
them into Grasshopper.

Fig.8.25. Paper sheets and an underlying surface to represent them in Grasshopper.

| am going to use <Orient> component (XForm > Euclidian > Orient) to nest my curves into the
surface which represents the sheets for cutting purpose. If you look at the <orient> component you
see that we need the objects plane as reference plane and target plane which should be on the
surface. Since | used the planes to intersect the initial surface and generate the section curves, | can
use them again as reference planes, so | need to generate target planes.

-‘ =

Fig.8.26. | introduced the cutting surface to Grasshopper and | used a <surface Frame> component

(Surface > Util > Surface frames) to generate series of frames across the surface. It actually works like
<divide surface> but it generates planes as the output, so exactly what | need.
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Fig.8.27. Orientation. | connected the section curves as base geometries, and the planes that | used to
generate these sections as reference geometry to the <orient> component. But still a bit of
manipulations is needed for the target planes. If you look at the <surface frame> component results
you see that if you divide U direction even by 1 you will see it would generate 2 columns to divide the
surface. So | have more planes than | need. So | <split> the list of target planes by the number that
comes from the number of reference curves. So | only use planes as much as curve that | have. Then |
moved these planes 1 unit in X direction to avoid overlapping with the sheet’s edge. Now | can
connect these planes to the <orient> component and you can see that all curves now nested on the
cutting sheet.

Fig.8.28. nested curves on the cutting sheet.

IChapter 8



160 | Fabrication

Making ribs

. ‘ { thickness of the ribs |, { closing ﬂre: ribs },

Fig.8.29. After nesting the curves on the cutting sheet, as | told you, because my object does not have
any thickness, in order to cut it, we need to add thickness to it. That’s why | <offset> oriented curves
with desired height and | also add <line>s to both ends of these curves and their offset ones to close
the whole drawing so | would have complete ribs to cut.

Joints (Bridle joints)

The next issue is to generate ribs in other direction and make joints to assemble them after being
cut. Although | used the same method of division of the bounding box length to generate planes and
then sections, but | can generate planes manually in any desired position as well. So in essence if you
do not want to divide both directions and generate sections evenly, you can use other methods of
generating planes and even make them manually.

Fig.8.30. As you see here, instead of previously generated planes, | used manually defined planes for
the sections in the other direction of the surface. One plane generated by X value directly from
<number slider> and another plane comes from the mirrored plane on the other side of the surface
(surface length — number slider). The section of these two planes and surface is being calculated for
the next steps.
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Now | can orient these new curves on another sheet to cut which is the same as the other one. So

let’s generate joints for the assembly which is the important point of this part.

Fig.8.31. since we have the curves in two directions we can find the points of intersections. That’s
why | used <CCX> components (Intersect > Physical > Curve | Curve) to find the intersect position of
these curves which means the joint positions (The <CCX> component is in cross reference mode).

After finding joint’s positions, | need a bit of drawing to prepare these joints to be cut. | am thinking
of preparing bridle joints so | need to cut half of each rib on the joint position to be able to join them
at the end. First | need to find these intersect position on the nested ribs and then draw the lines for
cutting.

thickness of the ribs

‘|

Fig.8.32. If you look at the outputs of the <CCX> component you can see that it gives us the
parameter in wish each curve intersect with the other one. So | can <evaluate> the nested or
<orient>ed curves with these parameters to find the joint positions on the cutting sheet as well.
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I height

Fig.8.33. Now we have the joint positions, we need to draw them. First | drew lines with <line SDL>
component with the joint positions as start points, <unit Y> as direction and | used half of the rib’s
height as the height of the line. So as you see each point on the nested curves now has a tiny line

associated with it.

sheel_thick

Fig.8.34. Next step, draw a line in X direction from the previous line’s end point with the length of the

<sheet_thickness> (depends on the material).
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Fig.8.35. This part of the definition is a bit tricky but | don’t have any better solution yet. Actually if
you offset the first joint line you will get the third line but as the base curve line is not straight it
would cross the curve (or not meet it) so the end point of the third line does not positioned on the
curve. Here | drew a line from the end point of the second line, but longer than what it should be, and
| am going to trim it with the curve. But because the <trim with BRep> component needs BRep
objects not curves, | extruded the base curve to make a surface and again | extruded this surface to
make a closed BRep. So if | trim the third line of the join with this BRep, | would get the exact joint
shape that | want.

Sheel_thickness el e i

Fig.8.36. Using a <join curves> component (Curve > Util > Join curves) now as you can see | have a
slot shaped <join curve> that | can use for cutting as bridle join in the ribs.
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Fig.8.37. | am applying the same method for the other end of the curve (second joints on the other
side of the curve).

Fig.8.38. Ribs with the joints drawn on their both ends. With the same trick | can trim the tiny part of
the base curve inside joint but because it does not affect the result | can leave it.

Labelling

While working in fabrication phase, it might be a great disaster to cut hundreds of small parts
without any clue or address that how we are going to assemble them together, what is the order,
and which one goes first. It could be simply a number or a combination of text and number to
address the part. If the object comprises of different parts we can name them, so we can use the
names or initials with numbers to address the parts also. We can use different hierarchies of project
assembly logic in order to name the parts as well.

Here | am going to number the parts because my assembly is not so complicated.
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4 thickness of the ribs

Fig.8.39. As you remember | had a series of planes which | used as the target planes for orientating
my section curves on the sheet. | am going to use the same plane to make the position of the text.
Since this plane is exactly on the corner of the rib | want to displace it first.

Fig.8.40. | moved the corner planes 1 unit in X direction and 0.5 unit in Y direction (as <sum> of the
vectors) and | used these planes as the position of the text tags. Here | used <text tag 3D> and |
generated a series of numbers as much as ribs | have to use them as texts. The <integer> component
that | used here simply converts 12.0 to 12. As the result, you can see all parts have a unique number
in their left corner.
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Fig.8.41. | can change the division factors of the cutting surface to compress ribs as much as possible
to avoid wasting material. As you see in the above example, from the start point of the sheet 3 ribs
started to be more flat and | have more space in between. Here | can split ribs in two different cutting
surface and change the division points of each to compress them based on their shape. But because |
am not dealing with lots of parts | can do this type of stuff manually in Rhino, all parts does not
necessarily to be Associative! Now | have the ribs in one direction, and | am going to do the same for
the other direction of ribs as well. The only thing that you should consider here is that the direction of
the joints flip around here, so basically while | was working with the <orient> geometry in the
previous part here | should work with the <offset> one.

Cutting

When all geometries become ready to cut, | need to burn them and manage them a bit more on my
sheets. As you see in Figure 8.42 they all nested in three sheets. | generated three different shapes
for the ribs in the width direction of the object to check them out. The file is now ready to be cut.

Fig.8.42. Nested ribs, ready to be cut.
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Fig.8.43. Cut ribs, ready to assemble.

Assembly

In our case assembly is quiet simple. Sometimes you need to check your file again or even provide
some help files or excel sheets in order to assemble your parts in different fabrication methods. All
together, here is the surface that | made.
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8.44.a/b. Final model.
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Fabrication is a wide topic to discuss. It highly depends on what you want to fabricate, what is the
material, what is the machine and how fabricated parts going to be assemble and so on. As | told you
before, depend on the project you are working on, you need to provide your data for the next
stages. Sometimes it is more important to get the assembly logic, for example when you are working

with simple components but complex geometry as the result of assembly.

Fig.8.45. Assembly logic; material and joints are simple; | can work on the assembly logic and use the

data to make my model.
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Chapter_9 Design Strategy

Associative modelling is an algorithmic way of dealing with geometry. More than the conventional
geometrical objects, with this algorithmic method, now we have all possibilities of computational
geometries as well as dealing with the huge amount of data, numbers and calculations. It seems that
there is a great potential in this realm. Here the argument is to not limit the design in any predefined
experiment, and explore these infinite potentials; there are always alternative ways to do
algorithmic modelling. Although it seems that the in-built commands of these parametric modelling
softwares could limit some actions or dictate some methods, but alternative solutions could always
be brought to the table, let our creativity fly away of limitations.

In order to design something, having a Design Strategy always helps to set up a good algorithm and
to find the design solution. Thinking about the general properties of the design object, drawing some
parts, even making some physical models, would help to a better understanding of the algorithm so
better choice of <components> in digital modelling. Thinking about fix parameters, parameters that
might change during the design, numerical data and geometrical objects needed, always helps to
improve the algorithm. It would be helpful to analytically understand the design problem, sketch it
and then start an algorithm that can solve the problem.

We should think in an Algorithmic way to design Algorithmic.
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Fig.9.1. Weaving project; From Analytical understanding to Associative modelling.
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Fig.9.2. Porous wall project; From Analytical understanding to Associative modelling.
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