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Introduction 

Have you ever played with LEGO Mindstorms NXT robotic set? Associative modelling is something 
like that! While it seems that everything tends to be Algorithmic and Parametric why not 
architecture?  

During my Emergent Technologies and Design (EmTech) master course at the Architectural 
Association (AA), I decided to share my experience in realm of Generative Algorithms and 
Parametric-Associative Modelling with Grasshopper as I found it a powerful platform for design in 
this way.  

In this second edition, as I changed the name ‘Algorithmic Modelling’ to ‘Generative Algorithms’, I 
tried to update some of the experiments and subjects due to the changes happening to the work-in-
progress project of Grasshopper. I hope this tutorial helps you to understand Generative Algorithms 
and delicate Grasshopper as well. I would try to keep updating whenever needed but consider that 
most of experiments and examples were established by previous versions of plug-in, so if you faced 
some differences it might be because of that. 

Although I still believe that the book needs editorial review, since this is a non-profit, non-
commercial product, please forgive me about that. I am very pleased that since publishing this book, 
I have found great friends worldwide, so feel free to contact me for any queries and technical issues. 

Enjoy and Good luck! 
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1_1_ Generative Algorithms 

If we look at architecture as an object, represented in space, we always deal with geometry 
and a bit of math to understand and design this object. In the History of architecture, 
different architectural styles have presented multiple types of geometry and logic of 
articulation and each period has found a way to deal with its geometrical problems and 
questions. Since computers have started to help architects, simulate space and geometrical 
articulations, it became an integral tool in the design process. Computational Geometry 
became an interesting subject to study and combination of programming algorithms with 
geometry, yielded algorithmic geometries known as Generative Algorithms. Although 3D 
softwares helped to simulate almost any space visualized, it is the Generative Algorithm 
notion that brings the current possibilities of design, like ‘parametric design’ in the realm of 
architecture. 

Architects started to use free form curves and surfaces to design and investigate spaces 
beyond the limitations of conventional geometries of the “Euclidian space”. It was 
combination of Architecture and Digital that brought ‘Blobs’ on the table and pushed it 
further. Although the progress of the computation is extremely fast, architecture has been 
tried to keep track with this digital fast pace progress.  

Contemporary architecture after the age of “Blob” seems to be more precise about these 
subjects. Architectural design is being affected by potentials of algorithmic computational 
geometries with multiple hierarchies and high level of complexity. Designing and modelling 
free-form surfaces and curves as building elements which are associated with different 
components and have multiple patterns is not an easy job to do with traditional methods. 
This is the power of algorithms and scripts which are forward pushing the limits. It is obvious 
that even to think about a complex geometry, we need appropriate tools, especially 
softwares, which are capable of simulating these geometries and controlling their 
properties. As a result, architects feel interested to use Swarms or Cellular Automata or 
Genetic Algorithms to generate algorithmic designs and go beyond the current pallet of 
available forms and spaces. The horizon is a full catalogue of complexity and multiplicity that 
combines creativity and ambition together. 
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Fig.1.1. Parametric Modelling for Evolutionary Computation and Genetic Algorithm, Zubin 
Mohamad khabazi, Emergence Seminar, AA, conducted by Michael Weinstock, fall 2008. 

 

A step even forward, now embedding the properties of material systems in design 
algorithms seems to be more possible in this parametric notion. Looking at material effects 
and their responses to the hosting environment in the design phase, now the inherent 
potentials of the components and systems should be applied to the parametric models of 
design. Not only these generative algorithms deal with form generation, but also there is a 
great potential to embed the logic of material systems in them. 

“The underlying logic of the parametric design can be instrumentalised here as an 
alternative design method, one in which the geometric rigour of parametric modelling can 
be deployed first to integrate manufacturing constraints, assembly logics and material 
characteristics in the definition of simple components, and then to proliferate the 
components into larger systems and assemblies. This approach employs the exploration of 
parametric variables to understand the behaviour of such a system and then uses this 
understanding to strategise the system’s response to environmental conditions and external 
forces” (Hensel, Menges, 2008). 

 

To work with complex objects, a design process usually starts from a very simple first level 
and then other layers are added; complex forms are comprised of different hierarchies, each 
associated with its own logic and details. These levels are also interconnected and their 
members affect each other and in that sense this method called ‘Associative’.  

Generally speaking, Associative Modelling relates to a method in which elements of design 
being built gradually in multiple hierarchies and at each level, some parameters of these 
elements being extracted to be the generator for other elements in the next level and this 
goes on, step by step to produce the whole geometry. So basically the end point of one 
curve could be the center point of another circle and any change in the curve would change 
the circle accordingly. Basically this method of design deals with the huge amount of data 
and calculations and happens through the flow of algorithms. 
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The point is that all these geometries are easily adjustable after the process. Designer 
always has access to the elements of design product from start point up to details. Actually, 
since the design product is the result of an algorithm, inputs of the algorithm could be 
changed and the result would also be updated accordingly. It is now possible to digitally 
sketch a model and generate hundreds of variations of project by adjusting very basic 
geometrical parameters. It is also viable to embed the properties of material systems, 
fabrication constraints and assembly logics in parameters. It is also possible to respond to 
the environment and be associative in larger sense. “… Parametric design enables the 
recognition of patterns of geometric behaviour and related performative capacities and 
tendencies of the system. In continued feedback with the external environment, these 
behavioural tendencies can then inform the ontogenetic development of one specific system 
through the parametric differentiation of its sub-locations” (Hensel, Menges, 2008). 

 

 

Fig.1.2. A. form-finding in membranes and minimal surfaces, physical model, B. membrane’s 
movement modelled with Grasshopper, Zubin Mohamad Khabazi, EmTech Core-Studio, AA, 
Conducted by Michael Hensel and Achim Menges, fall 2008. 

 

Grasshopper is a platform in Rhino to deal with these Generative Algorithms and Associative 
modelling techniques. The following chapters are designed in order to combine geometrical 
subjects with algorithms to address some design issues in architecture in an ‘Algorithmic’ 
method. The idea is to broaden subjects of geometry and use more commands and 
examples are designed to do so. 
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2_1_Method 

This new edition of previously ‘Algorithmic Modelling’ and now ‘Generative Algorithms’ is 
prepared due to my worldwide Grasshopper friends’ questions and correspondence and 
also changes which were happened in Plug-in. Since Grasshopper is a work-in-progress 
project and improves and changes rapidly, it seems necessary to upgrade the book in this 
moment (and I am not totally sure by the time you receive it, another upgrade is needed or 
not!). You should consider that most of the experiments have been done by previous 
versions of the plug-in but I tried to update them wherever needed and I am sure that if you 
faced any difference, you can find your way through. 

The main concept of the book is to focus on some geometrical and architectural problems 
and projects and to develop the understanding of Generative Algorithms, parametric 
modelling, based on design experiments instead of describing pure math or geometry. To do 
so, in most cases I assumed that you already know the basic understanding of ingredients of 
discussions and I would not go through the definition of the ‘degree of a curve’ although I 
will touch some, whenever necessary. 

Grasshopper is fast growing and becoming a suitable platform for architects to design. More 
than a tool or software, it presents a way of thinking for design issues, a ‘method’ called 
Parametric or Associative these days. This method is developing by users all around the 
world as a practical example of distributed intelligence. Since these developments of the 
methods happen constantly and there are always upgrades to the software, and also 
interesting discussions, I would recommend checking the Grasshopper web page 
occasionally. By the way here in this chapter I would briefly discuss general issues of 
workplace and basics of what we should know in advance. 

 

 

 

 

http://www.grasshopper3d.com/ 

http://www.grasshopper3d.com/�
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2_2_Basics of Grasshopper 

2_2_1_Interface, Workplace 
Beside the other usual Windows menus, there are two important parts in the Grasshopper 
interface: Component Panels and Canvas. Component Panels provide all elements we need 
for our design and Canvas is the work place, where we put our Components and set up our 
algorithms. You can click on any object from Panels and click again on Canvas to bring it to 
work place or you can drag it on to the work place. Other parts of the interface are easy to 
explore and you will be familiar with them through using them later on. More information 
about this subject is also available at:  

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryPluginInterfaceExplained.html 

  

Fig.2.1. Grasshopper Component Tabs/Panels and Canvas 

 

2_2_2_Components 
There are different types of objects in Grasshopper panels or components menu which we 
use to design stuff. You can find them under ten different tabs called: Params, Logic, Scalar, 
Vector, Curve, Surface, Mesh, Intersect, XForm and Complex. 

 

Canvas 

Component Tabs and Panels 

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryPluginInterfaceExplained.html�
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Each tab has multiple panels and different objects, and commands are sorted between 
these panels. There are objects in these panels to draw geometries like lines and circles and 
there are also lots of commands to move, rescale, divide, deform and ... these geometries. 

So some objects draw stuff and generate data, some of them manipulate an already existing 
geometry or data. Parameters are objects that represent data, like a point or line. You can 
draw them by relevant Parameters or you can define them manually from drawn objects of 
Rhino workplace. Components are objects that do actions like move, orientate, and 
decompose. We usually need to provide relevant data for them to work.  

As I told, each of them has an object in Panels which you can bring to canvas to use. In this 
manual I used the term component

   <Point> component 

 

If you right-click on a component, a menu will pop-up that contains some basic aspects of 
the component. This menu called “Context pop-up menu”. 

 to talk about any objects from the component panels to 
make life easier! and I always used <> to address them clearly in the text, like <Point>. 

  “Context pop-up menu” 
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From now on, you need to find relevant components from panels and set up connections 
between these components in order to generate your design algorithm and see the result in 
Rhino workplace. If Scripting is a coded and abstract version of algorithms, here in 
Grasshopper, the canvas represents a visual version of algorithms like Flowcharts which is 
more sensible and flexible in designer’s hand. 

 

Fig.2.2. Flowchart vs. Grasshopper Algorithm 

 

Defining External Geometries 

Most of the time we start our design projects by introducing drawn objects from Rhino 
workplace to the Grasshopper canvas. It could be a point, a curve, a surface up to multiple 
complex objects. It means we can use our manually created objects or even script generated 
objects from Rhino in Grasshopper as external sources. Since any Geometry in Grasshopper 
needs a component in canvas to work with, we have to define our external geometries in 
canvas by relevant components. For this purpose we can look at the Params tab under 
Geometry panel. There is a list of different types of geometries that you can use to define 
your external object from Rhino workplace. 

After bringing the proper geometry component to the canvas, define a Rhino object by 
right-click on the component (context menu) and use “set one ... / set multiple … “ to assign 
abject to the component. Here you need to select your geometry from Rhino workplace. By 
introducing an object/multiple objects to a component it becomes Grasshopper object 
which we can use it for any design purpose.  
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Fig.2.3. Different geometry types in the Params > Geometry panel 

 

Let’s have a simple example. 

We have three points in Rhino viewport and we want to draw a triangle by these points in 
Grasshopper. First we need to introduce these points in Grasshopper. We need three 
<point> components from Params > Geometry > Point and for each we should go to their 
context menu (right click) and select ‘set one point’ and then select the point from Rhino 
viewport (Fig.2.4). 

 

Fig.2.4. Set point from Rhino in Grasshopper component 
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Fig.2.5. Grasshopper canvas and three points defined which turned to red crosses (x) in Rhino 
workplace. I renamed components to point A/B/C by the first option of their context menu to 
recognize them easier in canvas. 

 

Components Connectivity 

There are so many different actions that we can perform by components. Generally a 
component takes some data from one/multiple source and gives the result back. We need 
to connect the component which includes the input data to the processing component and 
connect the result to the other components that need this result and so on. 

Going back to the example, now if you go to the Curve tab of components, in the Primitive 
panel you will see a <line> component. Drag it to the canvas. Then connect <point A> to the 
‘A’ port of the <line> and <point B> to the ‘B’ port (to connect components, just click on the 
semi-circle at the right side of <point> and drag it up to the other semi-circle on the target 
(A/B input port of the <line>). You can see that Rhino draws a line between these points.  
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Fig.2.6. Connecting <point> components to a <line> component by dragging from output of 
the <point B> to the input of <line>. 

Now add another <line> component for <point B> and <point C>. Do it again for <point C> 
and <point A> with the third <line> component. Yes! There is a triangle in Rhino viewport. 

 

Fig.2.7. <line> components draw lines between <point> components. As you see any 
component could be used more than once as the source of information for other actions. 

 

Fig.2.8. Now if you change the position of points manually in Rhino viewport, position of 
points in Grasshopper (X ones) and resultant triangle will change accordingly but lines 
between points (triangle) would remain. 



Ch
ap

te
r_

2 

 

 

13  The very Beginning 

 

 

G
A

_V
er

.0
2 

 

As you can see in this very first example, associative technique made it possible to 
manipulate points and still have triangle between these points without further need to 
adjust them. So the idea is to prepare objects (feeding algorithm/input), set up relations 
between objects and add other manipulations to them (algorithm’s function) and generate 
the design (algorithm output). We will do more by this concept to develop our 
understandings about Algorithms. 

 

There are some features on this subject that you can learn more at: 

Input / Output 

As mentioned before, any component in Grasshopper has input and output which means it 
processes the given data and gives the processed data back. Inputs are in left part of 
components and outputs at right. Data comes from any source attached to the input section 
of the component and output of the component is the result of that specific function.  

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryVolatileDataInheritance.html 

 

You have to know that what sort of input you need for any specific function and what you 
get after that. We will talk more about different sort of data we need to provide for each 
component later on. Here I propose you to hold your mouse or “hover” your mouse over 
any input/output port of components. A tool-tip will pop-up and you will see the name, sort 
of data you need to provide for the component, is any predefined data there or not, and 
even what is it for. 

 

 

Fig.2.9. Pop-up tool-tip comes up if you hold your mouse over input/output port of the 
component. 

 

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryVolatileDataInheritance.html�
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Fig.2.10. Multiple connections for one component by holding shift key 

 

Multiple connections 

Sometimes you need to feed a component by more than one source of data. Imagine in the 
above example you want to draw two lines from <point A> to <point B> and <point C>. You 
can use two different <line> components or you can use one <line> component and attach 
both point B and C as the second point of the <line> component. To do this, you need to 
hold Shift key when you want to connect the second source of data to a component, 
otherwise Grasshopper would substitute it. When you hold shift, the arrow of the mouse 
appear in a green circle with a tiny (+) icon while normally it is gray. You can also use Ctrl 
key to disconnect a component from another one (normally you can disconnect a 
component from another one using context menu). In this case the circle around the mouse 
appears in red with a tiny (-) icon. 

 

Fig.2.11. Colour Coding. 

Colour Coding 

There is a colour coding system inside Grasshopper which shows components working 
status. 
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Any grey component means there is no problem and the data defined correctly/the 
component works correctly. The orange shows warning and it means there is at least one 
problem that should be solved but the component still works. The red component means 
error and the component does not work in this situation. The source of error should be 
found and solved in order to make component work properly. You can find the first help 
about the source of error in component’s context menu (context menu > Runtime 
warning/error) and then search the input data to find the reason of error. The green colour 
means this component selected. The geometry which is associated with this component also 
turns into green in Rhino viewport (otherwise all Grasshopper geometries are predefined to 
red). 

 

2_2_3_Data matching 

Preview 

All components that produce objects in Rhino have ‘Preview’ option in their menu. We can 
use it to hide or unhide geometries in workplace. Any unchecked preview (Hidden output) 
make the component name becomes hatched. We usually use preview option to hide 
undesired geometries like base points and lines in complex models to avoid distraction. This 
option in complex models helps to process data faster, so please hide your base geometries 
when you do not need them to be seen. 

 

 

For many Grasshopper components it is always possible to provide a list of data instead of 
just one input. So in essence you can provide a list of points and feed a <line> component by 
this list and draw more lines instead of one. It is possible to draw hundreds of objects just by 
one component if we provide information needed. 

 

Look at this example: 

I have two different point sets, each with seven points. I used two <point> components and 
I used ‘set multiple points’ to introduce all upper points in one component and all lower 
ones in another component as well. As you see, by connecting these two sets of points to a 
<line> component, seven lines being generated between them. So we can generate more 
than one object with each component (Fig.2.12) 
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Fig.2.12. Multiple point sets and generating lines by them. 

 

But what would happen if the number of points was not the same in two point (data) sets? 

In the example below I have 7 points in top row and 10 points in the bottom. Here we need 
a concept in data management in Grasshopper called ‘Data matching’. If you have a look at 
the context menu of the component you see there are three options called: 

 

Shortest list 

Longest list 

Cross reference 

 

Look at the difference in Figure 2.13. 

 

It is clear that the shortest list uses the shortest data set to make lines, and the longest list 
uses the longest data set while uses an item of the shorter list more than once. The cross 
reference option connects any possible two points from lists together. It is very memory 
consuming option and sometimes it takes a while for the scene to upgrade changes. 

Since the figures are clear, I am not going to describe more. For more information go to the 
following link:  

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryDataStreamMatchingAlgorithms.html 

 

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryDataStreamMatchingAlgorithms.html�
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Fig.2.13. Data matching A: shortest list, B: longest list and C: cross reference 

 

 

2_2_4_Component’s Help (Context pop-up menu) 
As it is not useful to introduce all components and you will better find them and learn how 
to use them gradually in experiments, I recommend you to play around, pick some 
components, go to the components context menu (right-click) and read their Help which is 
always useful to see how this component works and what sort of data it needs and what 
sort of output it provides. There are other useful features in this context menu that we will 
discuss about them later. 
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Fig.2.14. Context pop-up menu and Help part of the component 

 

2_2_5_Type-In Component Search / Add 
If you know the name of component you want to use, or if you want to search it faster than 
shuffling components’ tabs and panels, you can double-click on the canvas and type-in the 
name of the component to bring it to the canvas. For those who used to work with 
keyboard entries, this would be a good trick! 

 

Fig.2.15. Searching for <line> component in the component-pop-up menu by double clicking 
on the canvas and typing the name of it. The component will be brought to the canvas. 
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Chapter_3_Data Sets and Math 

Although in 3D softwares we can select our geometries from menus and draw them explicitly by 
clicking without thinking of the mathematical aspects behind, in order to work with Generative 
Algorithms, as the name sounds, we need to think a bit about data and math to make inputs of 
algorithm and generate multiple objects. Since we do not want to draw everything manually, we 
need some sources of data as the basic ingredients to make this generation possible and feed the 
algorithm to work more than once and result in more than one object. 

The way in which algorithm works, the Workflow, is simple. It includes input of data, processing the 
data and output. This process happens in the whole algorithm or if we look closer, at each part of it. 
So instead of conventional method of drawing every object, we provide information, this 
information will process by the algorithm and the resultant geometry will be generated. As I said, for 
example, instead of copying an object by clicking 100 times in screen, we can tell the algorithm, copy 
an item for ‘100 times’ in ‘X positive direction’ with the space of ‘3’ between them. To do that you 
need to define the ‘100’ as number of copying, and ‘X Positive’ direction and ‘3’ as the space in 
between and the algorithm performs the job for you automatically.  

All we are doing in geometry has a little bit of math behind. We can use these simple math functions 
in our algorithms with numbers and objects, to generate infinite geometrical combinations. It starts 
with numbers and numerical sets of data. 

Let’s have a look; it is easier than what it sounds! 

 

3_1_Numerical Data Sets 

All math and algorithms start with numbers. Numbers are hidden codes of the universe. To begin, 
first of all we should have a quick look at numerical components to see how we can generate 
different numerical data sets in Grasshopper and then the way we can use them to design stuff. 

 

       

The most useful number generator is <Number slider> component (Params > Special > Number 
slider) that generates one number which is adjustable manually. It could be integer, real, odd, even 
and with limited lower and upper values. You can set them all by ‘Edit’ part of the context menu. 

For setting one fixed numeric value you can go to the Params > Primitive > Integer / Number to set 
one integer/real value through context menu of <Int>/<Num>. 

 

One numerical value  
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We can produce a list of discrete numbers by <series> component (Logic > Sets > Series). This 
component produces a list of numbers which we can adjust the first number, step size of the 
numbers, and the number of values. 

0, 1, 2, 3, … , 100  

0, 2, 4, 6, … , 100 

10, 20, 30, 40, … , 1000000 

 

 

Series of numbers 

 

We can divide a numerical range between a low and high value by evenly spaced numbers and 
produce a range of numbers. We need to define an interval to set the lower and upper limit and also 
the number of steps between them (Logic > Sets > Range). 

Any numeric interval (i.e. from 1 to 10) could be divided into infinite parts: 

1, 2, 3, … , 10 

1, 2.5, 5, … , 10 

1, 5, 10 

 

 

Range of numbers 
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Domains (‘Intervals’ in previous versions) provide a range of all real numbers between a lower and 
upper limit. There are one dimensional and two dimensional domains that I will talk about them 
later. We can define a fixed domain by using Params > Primitive > Domain/Domain2 component or 
we can go to the Scalar > Domain which provides a set of components to work with them in more 
flexible ways. 

Domains by themselves do not provide numbers. They are just extremes, with upper and lower 
limits. As you know there are infinite real numbers between any two real numbers. We use different 
functions to divide them and use division factors as the numerical values. 

To see the difference and usage lets go for some examples. 

 

Domains (Intervals) 

3_2_On Points and Point Grids 

Points are among the basic elements for geometries and Generative Algorithms. As points mark a 
specific position in the space they can be start points of curves, centre of circles, origin of planes and 
so many other roles. In Grasshopper we can generate points in several ways: 

- We can simply pick a point/bunch of points from the scene and introduce them to our workplace 
by <point> component (Params > Geometry > point) and use them for any purpose (These points 
could be adjusted and moved manually later on in Rhino scene and affect the whole project. 
Examples on chapter_2). 

- We can introduce points by <point xyz> component (vector > point > point xyz) and feed the 
coordinates of the points by numbers. Or we can feed it by different datasets, based on our needs. 

- We can make point grids by <grid hexagonal> and <grid rectangular> components. 

- We can extract points from other geometries in many different ways like endpoints, midpoints, etc. 
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- Sometimes we can use planes (origins) and vectors (tips) as points to start other geometries and 
vice versa. 

You have seen the very first example of making points in chapter_2 but let’s have a look at how we 
can produce points and point sets by <series>, <range> and <number slider> components and other 
numerical data providers. 

 

 

Fig.3.1. feeding a <point xyz> or <pt> component by three <number slider> to generate a point by 
manually feeding the X,Y and Z coordinates. 

 

Fig.3.2. Generating a grid of points by <series> and <pt> components while the first <number slider> 
controls the distance between points (step size) and the second one controls the number of points in 
grid by controlling the number of values in <series> component (The data match of the <pt> set into 
cross reference to make a grid of points but you can try all data matching options). 

 

Fig.3.3. Dividing a numerical range from 0 to 1 by a manually controllable number (5) and feeding a 
<pt> component with ‘Longest list’ data match by these numbers. Here we divided the range by 5 so 
we have 6 points and all points drawn between the origin point(0,0) and point(1, 1) on the Rhino 
workplace (you can change the lower and upper limit of the <range> to change the coordinates of 
the points. To do so you need to right-click on the D part of the component (domain) and change the 
domain. There are other ways to work with intervals and change them which we will discuss later). 

Since our first experiments sound easy, let’s go further, but you can have your own investigations of 
these components and provide different point grids with different positions and distances. 
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3_3_Other Numerical Sets 

 

Fig.3.4. Generating a random point set. The <random> component produces 10 random numbers 
which is controlled by <number slider> and then this list is shuffled by <jitter> component (Logic > 
Sets > Jitter) for Y coordinates of the points once, and again for Z coordinates, otherwise you could 
see some sort of pattern inside your grid (attach the <random> to X, Y and Z of the <pt> without 
<jitter> and check it!). The data match set to longest list. 

In figure 3.4 all points are distributed in the space between 0 and 1 of the coordinate system for 
each direction. To change the distribution area of the points we should change the numerical 
domain in which <random> component produces numbers. This is possible by manually setting the 
“domain of random numeric range” on Rhino command line if you right-click on (R) port (random 
numbers domain) of component or by defining the domain intervals adjustable by sliders. (Fig.3.5) 

Random Data Sets 

I am thinking of making a randomly distributed set of points for further design issues. All I need is a 
set of random numbers instead of <series> to feed <pt> component. So I pick a <random> 
component from Logic > sets. A <random> component provides a list of random numbers and we 
can control the number of values and domain of them. But the <random> component produces one 
set of random numbers and I don’t want to have same numbers for all X,Y and Z coordinates. To 
avoid same values, I need different random numbers for each. I need to provide three lists of 
random numbers either by three <random> components with different seeds (by feeding <random> 
component’s (S) port with different numbers, to generate different random values otherwise all 
<random> components would generate same values) or to shuffle the current list of numbers. 

 

Fig.3.5. Setting up a domain by an <interval> component (Note: from now on please use Scalar > 
Domain > Domain in new version of Grasshopper instead of <interval>) to change the distribution 
area of points (look at the density of scene’s grid in comparison with Fig.3.4). 
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Fig.3.6. Using <Fibonacci> series to produce increasing distances (non-evenly spaced series of 
numbers) to generate points. The number of points could be controlled with a <number slider>. 

 

Fibonacci series 

What about making a point grid with non-evenly spaced, and increasing values? Let’s have a look at 
available components. We need series of numbers which grow rapidly and under Logic tab and Sets 
panel we can see a <Fibonacci> component. 

A Fibonacci is a series of numbers with two first defined numbers (0 and 1) and the next number is 
the sum of two previous numbers. 

N(0)=0, N(1)=1, N(2)=1, N(3)=2, N(4)=3, N(5)=5, … , N(i)=N(i-2)+N(i-1) 

Here are some of the numbers of the series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … 

As you see numbers grow rapidly.  

Here I used <Fibonacci> series (Logic > Sets > Fibonacci) to produce incremental numbers to feed a 
<pt> component with them. 

 

3_4_Functions  

Predefined components in Grasshopper might not be always your best way of designing stuff. You 
might need to generate your own data sets or at least manipulate the data of existing components. 
To do so, you need to use math functions and change the power, distance, … of numbers. Functions 
are components which are capable of performing math functions in Grasshopper. There are 
functions with different variables (Logic > script).  You need to feed a function with relevant data 
(not always numeric but also Boolean, String) and it performs a user defined function on the input 
data. To define the function you can right-click on the (F) part of the component and type it or go to 
the Expression Editor. Expression Editor has so many predefined functions and a library of math 
functions for help. 

Pay attention to the name of variables you use in your expression and the associated data you match 
to the function component! 
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Fig.3.7. Parametric circle by mathematical functions. You have <Sin> and <Cos> functions in the 
Scalar > Trig. (F(x) = x * 2Pi). 

 

 

Math functions 

As mentioned before, using a predefined component is not always what we aimed for, but in order 
to get the desired result we can use mathematical functions to change the data sets and feed them 
to generate geometries. 

A simple example is the mathematical function of a circle that is X=Sin(t) and Y=Cos(t) while (t) is a 
range of numbers from 0 to 2Pi. I produce it by a <range> of numbers which starts from 0 to 1 with N 
numbers in between, times 2Pi by <function> component. This would result a range of numbers 
from 0 to 2pi that makes a complete circle in radian. 

 

 

Fig.3.8. More experiments. Series of points which are defined by <Fibonacci> series and simple 
mathematical functions (x: F(x)=x/100, y: F(x)=x/10). The selected green F(x) is a function to add 2 to 
the value of <number slider> (F(x)=x+2) in order to make the values of <series> equal to the Fibonacci 
numbers (Fibonacci has two extra first values). The aim is to show you that we can simply manipulate 
these data sets and generate different geometries accordingly. 
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 Fig.3.9. A <range> of numbers from 0 to 2 which times by 2Pi with <Function> that makes it a 
numerical range from 0 to 4Pi. This range divided into 60 parts. The result feeds the <pt> component 
by the following math function: 

X=t * Sin(t), Y=t * Cos(t) 

You know <sin> and <cos> components. To apply t*sin/cos I used <multiplication> component from 
Scalar>Operators. There you could find components for simple math operations as well. 

 

 

 

Fig.3.10. A complex one! Inter tangent spirals from two inverted spiral point sets. <range> interval is 
from 0 to 4 which is divided into 400 points and then multiplied by functions: 

First <pt>: X: F(x) = x * Sin(x*2 Pi), Y: F(x) = x * Cos(x * 2 Pi) 

Second <pt> has the same functions but inverted. 
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Fig.3.11. Moebius by point sets. <u> and <v> are <range> components which renamed. The numeric 
domain of each one presented in the scene. The math function to generate Moebius is: 

X= Sin(u)*(-2+v*sin(u/2))  

Y= Cos(u)*(-2+v*sin(u/2)) 

Z= v*Cos(u/2) 

(While u=0 to 8Pi and v=-2 to 2 which created by function components and all feed <pt> component.) 

 

Playing around math functions could be endless. You can find so many mathematical resources to 
match your data sets with them. The important point is that you can manipulate the original data 
sets and generate different numerical values and feed other components by them. 

So as you see by simple sets of numerical data we can start to generate geometries and this is how 
algorithms work. From now on, we need to build up our knowledge based on various geometrical 
concepts in algorithmic method to deal with problems and design issues, like this very beautiful, 
Enneper surface, (by Rhino’s Math function plug-in): 
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3_5_Boolean Data types 

Data is not limited to Numbers. There are other data types which are useful for different purposes in 
programming and algorithms. Since we are dealing with algorithms, we should know that the 
progress of an algorithm is not always linear. Sometimes we want to decide whether to do 
something or not. Programmers call it conditional statements. We want to see if a statement meets 
certain criteria or not. The response of a conditional ‘question’ is a simple yes or no. in algorithms 
we use Boolean data to represent these responses. Boolean data types represent only True (yes) or 
False (no) values. If the statement meets the criteria, the response is True, otherwise False.  As you 
will see later, this data type is very useful in different cases when you want to decide about 
something, select some objects by certain criteria, sort objects, etc. 

 

Fig.3.12. Here I generated ten <random> values and by a <Larger> component (Scalar>Operators) I 
want to see if these numbers are less than a certain <Upper_limit> (any value by a <number slider>) 
or not. As you see whenever numbers meet the criteria (means it is smaller than the <Upper_limit>), 
the <Larger> passes ‘True’ as a result, otherwise ‘False’. Here I used <Panel> components form 
Params > Special to show the contents of the <Random> and the result of the <Larger> component.  

 

Fig.3.13. For the next step, I generated 30 values with a <series> component and I used a <Modulus> 
component (Scalar > Operators > Modulus) to find the remainder of the division of the numeric 
values by <3> and I passed the result to an <Equals> to see if these remainders = 0 or not. As you see 
the result is another <panel> of True/False values. 
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So as you can see in these examples, there are different possibilities to check criteria by numeric 
values and get Boolean values as result. But sometimes, we want to see if the situation meets 
different criteria, and we want to decide based on the result of them. For example based on the 
above experiments, we want to see whether a value is smaller than a certain upper_limit and at the 
same time it is dividable by 3. To know the result, we need to operate on the result of both functions 
which means we need to operate on Boolean values. If you check, under the Logic tab and in 
Boolean panel there are various components that work with Boolean data type. 

 

Fig.3.14. Here I combined both concepts. I used a <Gate And> component (Logic > Boolean > Gate 
And) and I attached both <function>s to perform Boolean conjunction on them. The result is True 
when both input Boolean values are True, otherwise it would be False. As you see, those numerical 
values which are smaller than the <Upper_limit> and dividable by 3 are meeting the criteria and pass 
True at the end.  

There are multiple Boolean operators on Boolean panel of the Logic tab that you can use and 
combine many of them to create your criteria, make decisions and build up your design based on 
these decisions. We will discuss how to use these Boolean values later. 

 

 

3_6_Cull Lists 

There are many reasons that we might want to select some of the items from a given data set and 
do not apply a function to all of them. To do this, we either need to select some of the specific items 
from a list or omit other items. There are different ways to achieve this but let’s start with omitting 
or culling lists of data. 

Up to now there are three <cull> components to cull a list of data in Grasshopper. While <cull Nth> 
omit every N item of a given list of data, <cull pattern> takes a pattern of Boolean values 
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(True/False) and cull a list of data, based on this pattern, means any item of the list that associates 
with True value in Boolean list passes and those that associate with False, omit from the list. <Cull 
index> culls a list of data by index numbers. 

If the number of values in the data list and Boolean list are the same, each item of the data list being 
evaluated by the same item in the Boolean list. But you can define a simple pattern of Boolean 
values (like False/False/True/True which is predefined in the component) and <cull> component 
would repeat the same pattern for all items of the data list. 

For better understanding, here I want to introduce some of the ways we can select our desired 
geometries (in this case points) out of a predefined data set. 

 

 

Fig.3.15. Selection of points from a point set by their distance to a reference point, using <Cull 
pattern> component. 

Distance example 

I am thinking of selecting some points from a point set based on their distance to another point 
(reference point). Both point set and the reference point are defined by <point> component. First of 
all what I need is a <distance> component (Vector > Point > Distance) that measures the distance 
between points and the reference and as a result it provides a list of numbers (distances). I 
compared these distances by a user defined number (<number slider>) with a <F2> component 
(Logic > Script > F2 / function with two variable). This comparison generates Boolean values as 
output (True/False) to show whether the value is smaller (True) or bigger (False) than the upper limit 
F=x>y (this is the same as <Larger> component). I am going to use these Boolean values to feed the 
<Cull pattern> component.  

As mentioned before, <Cull pattern> component takes a list of generic data and a list of Boolean 
data and omits those members of the generic list of data who associate with ‘False’ value of the 
Boolean list. So in this case the output of the <Call pattern> component is a set of points that 
associate with True values which means they are closer than the specified number shown on the 
<number slider>, to the reference point, because the X>Y function always pass True for the smaller 
values of Y which means smaller distances (y=Distance). To show them better I just connected them 
to the reference point by a simple <line>. 
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Fig.3.16. Topography with points associated with contour lines. 

 

What I have is a point set which is defined by a <point> component (named topography). I need the 
height of the points and with the same logic as distance example, I can select my desired points. 
Here I used a <Decompose> component (Vector > Point > Decompose) to get the Z coordinates 
(heights) of these points. Point <Decompose> gives me the X,Y and Z coordinates of each point of its 
input. I compared these values with a given number (<number slider>) with a <Larger> component 
to produce a list of associative Boolean values. The <Cull pattern> component passes points who 
associated with the True values which means selected points are higher than the user defined height 
value. 

 

Topography example 

Having tested the first distance logic, I am thinking of selecting some points which are associated 
with contour lines on a topography model, based on their height. 

 

 

Fig.3.17. Selected points are higher than 4.7550 unit! (A user defined value). These points are now 
ready to plant your Pine trees! 
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3_7_ Data Lists 

It is almost clear for you now that one of the basics of the algorithmic modelling is data lists. Data 
lists might be any sort of data like numbers, points, geometries and so on. Looking at the Logic tab, 
under the List panel there are multiple components that manipulate data lists. We can extract one 
item from a data list by its index number, we can extract part of a list by the lower and upper index 
numbers and so on. These list management items help us to gain a desired data list for our design 
purposes. Look at some examples: 

 

 

Fig.3.18. Here there is a list of points. I want to select the point with lowest X coordinate. As I said 
before, a <point decompose> component gives us the coordinates of points. What I need to do is to 
find the minimum X value of all X values of points. To achieve that I need to sort all these X 
coordinates to find the minimum. This is what <Sort List> will do for me. Basically <sort> component, 
sorts a list (or multiple lists) of data based on a numeric data list as sortable keys, so when it sorts 
numbers of key, the associated data will sort as well. So here I sorted all points with their X 
coordinates as Key data. What I need is to select the first item of this list. To do this, I need an <Item> 
component which extracts an item form a list by its index number. Since the first item (index 0) has 
the minimum X value, I extracted index 0 from the list and the output of the component would be the 
point with the minimum X value in the point set. 

 

 

 

 

 

Lets go for more examples: 
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Fig.3.19. Generating triangles by a network of points. 

 

The first step is to create a grid of points by <series> and <pt> components. The next step is to find 
the proper points to draw lines in between. Each time we need a line starts from a point and ends at 
the next point on the same row but next column, then another line goes from there, to the back 
column but at the next row and final line goes back from there to the start point. To do this, it seems 
better to make three different lists of points, one for all ‘first points’, one for all ‘second points’ and 
another for all ‘third points’ and then draw lines between them. 

I can use the original points as the list for all ‘start pints’. The first, ‘second point’ is the second point 
in the point set and then the list goes on, one by one. So to select the ‘second points’ I just shifted 
the original list by <Shift list> component (Logic > List > Shift list) by shift offset=1 which means the 
second item of the list (index 1) becomes the first item (index 0) and the rest of the list would be the 
same. This new list is the list of ‘Second points’. 

‘Third points’ of triangles are in the same column as the ‘first points, but in next row. In terms of 
index numbers, if the grid has N columns, the first point in the second row has the index = 

Triangles 

Let’s develop our experiments with data management. Imagine we have a network of points and we 
want to draw lines to make triangles with a pattern like figure 3.19. This concept is useful in mesh 
generation, panelization and relevant issues but for this time it is important to be able to generate 
this basic concept. 

 

index of 
the first point (0) + N 

In a grid with 6 columns, the index of the first point of the second row is 6. So here I shifted the 
original list of points again by shift offset = the number of columns, to get the first point of the next 
row (the shift offset comes from the <number slider> which is the number of columns) to find all 
third points. 
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Fig.3.20. Selected item is the shifted points by the shift offset value equal to the number of columns 
which produces all ‘third points’ of triangles. 

 

To complete the task I need to manipulate these lists a bit more so concentrate again: 

1. First of all, in the list of ‘First points’, points in the last column never could be first points of 
triangles, so I need to omit them from the list of ‘First points’.  

2. Points on the first column also, never could be ‘second points’, so I need to omit them from the 
list of ‘second points’.  

3. The same for ‘third points’, where points in the last column never could be third point as well. 

If you combine all these three parts and imagine and draw them you realize that in all three lists, 
points in the last column could not be used. 

So basically I need to omit last column from each list of data. That’s why I attached all points’ lists, 
each to one <Cull Nth> component. <Cull Nth> omits every N number of a data list and N is cull 
frequency (Fig 3.20). In this case all data lists culled by the number of columns. That’s because if for 
example we have 6 columns, it omits every 6th item of the list, means the item in the last column. 
And the result is a new list with omitted last column. 

So I just connected the <number slider> which defines the number of columns to each <Cull Nth> 
component as frequency. 

 

Fig.3.21. Using <Cull Nth> to omit the last column of the first, second and third point lists. 
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The last step is to feed three <line> components to connect first points to the second, then second 
points to the third and finally third points to the first again. 

 

 

Fig.3.22. Making lines by connecting culled lists of points to the <Line> component. Don’t forget that 
data matching for the <Pt> component set to Cross Reference and for <Line> components set to 
Longest List. 

 

Fig.3.23. Now by changing the <number slider> you can have different grids of points which produce 
these triangles accordingly. 
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Although there are still some problems with our design and we know that we should not start any 
triangle from the points of the last row (and we should omit them from the list of ‘first points’), but 
the concept is clear…… so let’s go further. We will come back to this idea while talking about mesh 
geometries and then I will try to refine it. The main idea is to see how data should be generated and 
managed. Let’s develop our understanding through more experiments. 

 

 

3_8_On Planar Geometrical Patterns 

Geometrical Patterns are among the possible design issues with Generative Algorithms and in 
Grasshopper. We have the potential to design a motif and then proliferate it as a pattern which 
could be used as a base of other design products. In case of designing patterns we should have a 
conceptual look at our design/model and extract the logic that produces the whole shape while 
being repeated. So by drawing the basic geometry we can copy it to produce the pattern as large as 
we need (Fig.3.22). 

 

Fig.3.24. Extracting the concept of a pattern by simple geometries. 
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I still insist on working on this subject by data sets and simple mathematical functions instead of 
other useful components just to see how these simple operations and numerical data sets have the 
great potential to generate shapes, even classic geometries. 

 

Fig.3.25. Complex geometries of Iran’s Sheikh Lotfollah Mosque’s tile work comprises of simple 
patterns which created by mathematical-geometrical calculations. 

 

 

Fig.3.26. Basic concepts to generate patterns. 

 

Simple Linear Pattern 

Here I decided to design a pattern with some basic points and lines and my aim is to use simple 
concepts like Figure 3.26.  

First of all I want to generate some basic points as base geometries and then draw my lines between 
them. I started my definition by a <series> which makes it possible to control the number of values 
(here number of points) and the step size (here distance between points). By this <series> I 
generated a set of points with only X entries (Y and Z =0). 
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Fig.3.27. Here I generated my first set of points with <series> and <pt> components. The new trick is 
a <Receiver> component from Params > Special > Receiver. This component takes data from one 
component and passes it to another one while removes wires from the canvas. So in complex 
projects, when we want to use one source of data for many other components, it helps us to clear the 
canvas and don’t be distracted by so many long wires. Here as you see in the second picture, the 
<Receiver> component, receives its data from <series>. 

 

Fig.3.28. To create a “zig-zag” form of connections I need two rows of points as base geometries. I 
used another <Receiver> to get data from <series> and with another <pt> I generated the second 
row of points here with Y values come from a <number slider>. 

 

Fig.3.29. In the next step, I have to omit some points from each list to provide basic points for zig-zag 
pattern. Here I omit those points with <cull pattern>, one with True/False and another one with 
False/True Boolean pattern. 
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Fig 3.30. Now if you connect both <Cull> components to a <Poly line> component from Curve > Spline 
which draws lines by multiple vertices instead of two points, you see that a Z shape line would be the 
result. This is because points are not sorted and they need to be sorted in a list like this: 1st_pt of 1st 
row, 1st _pt of 2nd row, 2nd_pt of 1st row, 2nd_pt of 2nd row, … 

 

Fig.3.31. The component that sorts points in a way which I described is <Weave> (Logic > List). It 
takes data from multiple resources and sorts them based on a pattern which should be defined in its 
P input (like always read the component’s help to see detailed information). The result is a list of 
sorted data and when you connect it to a <Pline> you see that the first zig-zag line is generated. 

 

Fig.3.32. With the same concept, I generated the third row of points, and with another <weave> and 
<Pline> components, I drew second zig-zag line of the pattern. 
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Fig.3.33. Although there are shorter ways to generate these lines, here again I used the same concept 
for points and pline of the third row. I unchecked the Preview option of <Pt>, <Cull> and <Weave> 
components (in their context menu) to hide all points and see Plines alone. 

 

 

Fig.3.34. If you copy all process again and in this time convert Y values of <pt> components to 
negative (using same <number slider>s with a function of f(x) = -x), you would have a mirrored set of 
Plines. Now manipulating distances, you could have patterns in different shapes and scales. 

 

 

 

Fig.3.35. you could change the way you generate your base points or cull your lists of data. The result 
could be different patterns of intersecting lines which is simple, but could be the generative geometry 
to produce complex models. 
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Fig.3.36. This is the first result of the design. The motif is repeated simply and the result could be used 
in any desired way which depends on your purpose. 

 

 

 

Fig.3.37. And this is just one of the examples among the hundreds of possibilities to use these basic 
patterns to develop a design. Later on you have the potential to differentiate the basic pattern and 
get manipulated design outcomes. 
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Circular patterns

 

Fig.3.38. Circular geometrical patterns. 

 

The start point of this pattern is a data set which produces a bunch of points along a circle, like the 
example we did before. This data set could be rescaled from the centre to provide more and more 
circles around the same centre. I will cull these sets of points with the same way as the last example. 
Then I will generate a repetitive ‘zig-zag’ pattern out of these rescaled-circular points to connect 
them to each other, make a star shape curve. Overlapping of these stars could make one part of the 
motif. 

 

  

There are endless possibilities to create motives and patterns in this associative modelling method. 
Figure 3.38 shows another motif which is drawn based on circular geometry rather than linear one. 
Since there are multiple curves which all have the same logic, I will describe one part of the 
algorithm and keep the rest for you. 

 

 

Fig.3.39. Providing a range of 0 to 2Pi and by using Sin/Cos functions, making the first set of points in 
a circular geometry. I used a function with two variables to multiply the result of Sin/Cos by another 
<number slider> to change the radius of the circle. 
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Fig.3.40. Increasing the result of Sin/Cos functions while multiplying by a <number slider>, making 
the second set of points with bigger radius. As you see the result of this section is two point sets. I 
renamed <pt> components. 

 

 

Fig.3.41. First and second circles of points. 

 

In order to cull points, we can simply use the <Cull pattern> for the points and use True/False like 
the last example. But how we can sort the list of points after all? It is possible again to use <weave> 
component. But here I want to use another concept of sorting which I think would be useful later. I 
want to sort points based on their index number in the set.  

First of all I need to generate index numbers. Because I produced points by a <range> component 
with real numbers, here I need a <series> component to provide integers as indices of the points in 
the list. The N parameter of the <range> defines the number of steps or divisions, so the <range> 
component produces N+1 numbers. That’s why I need a <series> with N+1 values to be the index of 
the points. 
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Fig.3.42. Generating index number of the points (a list of integers starts from 0) 

 

 

 

Fig.3.43. Now I need to cull points and indices both the same as previous example. Then I used 
<Merge> component (Logic > Tree) to generate one list of data from both <cull> lists. I did it for both 
points and indices. Although the result of the merging for <series> would be again numbers of the 
whole data set, the order of them is not the same and would be similar to the points. Now by sorting 
the indices as sortable keys we can sort the associated points as well. 



Ch
ap

te
r_

3 

 

 

46  Data Sets and Math 

 

 

G
A

_V
er

.0
2 

 

Fig.3.44. Points are sorted with a <sort> component while the sortable key is their indices. A Poly line 
is drawn by sorted points. 

 

 

Fig.3.45. Indecies before and after sorting, and associated-sorted points which generated a star-
shape poly line. 

 

The same logic could be used to create more complex geometries by simply generating other point 
sets, culling them and connecting them together to produce desired patterns finally. The trick is to 
choose the best group of points and the way you connect them to other sets. 
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Fig.3.46. You can think about other possibilities of the patterns and linear geometries and their 
applications like projecting them to other geometries. 

 

Although I insisted to generate all previous models by data sets and simple mathematical functions, 
we will see other simple components that make it possible to decrease the whole process or change 
the way we need to provide data. We will discuss them together. 

 

 

Fig.3.47. Final model. 
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Chapter_4_Transformations 

Transformations are essential operations in modelling and generating geometries. They enable us to 
get variations from the initial simple objects. Transformations help us to re-scale and orientate our 
objects, move, copy, mirror them, or may result in accumulation of objects. There are different types 
of transformations but to classify them, we can divide them to main branches, and the first division 
is linear and spatial transformations. Linear transformation performs on 2D space while spatial 
transformation deals with the 3D space and all possible object positioning.  

In other sense we can classify transformations by status of the initial object; transformations like 
translation, rotation, and reflection keep the original shape but scale and shear change the original 
state of the object. There are also non-linear transformations. In addition to translation, rotation and 
reflection we have different types of shear and non-uniform scale transformations in 3D space, also 
spiral and helical transformations and projections which make more variations in 3D space. 

In order to transform objects, conceptually we need to move and orientate objects (or part of 
objects like vertices or cage corners) in the space and to do this, we need to use vectors and planes 
as basics of these mathematical/geometrical operations. We are not going to discuss basics of 
geometry and their mathematical logic here, but first let’s have a look at vectors and planes because 
we need them to work with. 

 

 

Fig.4.1. Transformation is a great potential to generate complex forms from individuals. Nature has 
some great examples of transformation in its creatures. 
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4_1_Vectors and Planes 

Vector is a mathematical/geometrical object that has magnitude (or length) and direction and sense. 
It starts from a point, goes towards another point with certain length and specific direction. Vectors 
have wide usage in different fields of science and in geometry and transformations as well. 

 

 

Fig.4.2. A: Basic elements of a Vector, B: point displacement with a vector. 

 

Simply if we have a point and a vector, this vector can displace the point with the distance of 
vector’s magnitude and towards its direction to create a new position for it. We use this simple 
concept to generate, move, scale and orientate geometries in our associative method. 

Planes are another useful set of geometries that we can describe them as infinite flat surfaces which 
has an origin point. Construction planes in Rhino are these types of planes. We can use these planes 
to put our geometries on them and do some transformations based on their orientation and origin. 
For example in 3D space, we cannot orientate an abject on a vector! and we need two vectors to 
create a plane to be able to put geometry on it. 

Vectors have direction and magnitude while planes have orientation and origin. So they are two 
different types of constructs that can help us to create, modify, transform and articulate our models 
in space. 

Grasshopper has some of the basic vectors and planes as predefined components. These are 
including X, Y and Z unit vectors and XY, XZ, and YZ planes. There are couple of other components to 
produce and modify them which we will talk about them in our experiments. So let’s jump into 
design experiments and start with some of the simple usage of vectors and go step by step forward. 

 



Ch
ap

te
r_

4 

 

 

51  Transformations 

 

 

G
A

_V
er

.0
2 

4_2_On Curves and Linear Geometries 

As we have experimented with points which are 0-Dimension geometries, now we can start to think 
about curves as 1-Dimensional objects. Like points, curves could be the base for construction of so 
many different objects. We can extrude a curve along another one and make a surface, we can 
connect different curves together and make surfaces and solids, we can distribute any object along a 
curve with specific intervals and so many other ways to use a curve as a base geometry to generate 
other objects. 

 

 

Fig.4.3. A simple <Grid Rectangular> component with its predefined values. 

 

You can change the size of grid by a <number slider> as its distance input (S). You can also change 
the orientation of the points. To do this, you need a plane to stick your grid on it. Here, I introduced 
an <XY plane> component (Vector > Constants > XY plane) which is a predefined plane in the 
orientation of X and Y axis and I displaced it in Z direction by a <Z unit> component (Vector > 
Constants > Z unit) which is a vector along Z axis with the length (magnitude) of one. I can change 
the height of this displacement by the size of vector through a <number slider> that I connected to 
the input of the <Z unit> component; changing the position of the <XY plane> along the Z axis would 
change the position of the grid. 

 

Displacements 

We generated many point grids in chapter 3 by <series> and <pt> components. But there is a 
component called <Grid rectangular> (Vector > Point > Grid rectangular) which produces a grid of 
points. We can control the number of points in X and Y direction and the distance between points 
(equal in both directions) in this component. 
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Fig.4.4. Manipulated Grid (selected in green) with one <number slider> for scale of the grid (distance 
between points) and another with a <z unit> and <XY plane> to change the Z coordinates of the grid’s 
points. 

Now if you look at the output of the <grid rectangular> you can see that we have access to the 
whole points as well as grid cells and cell centers. For this experiment, I am looking for a bunch of 
lines that start from the grid cells’ centre points and spread out of it to the space, using these grids 
only. I can simply connect points from two <grid> component’s M part to a <line> component, and 
generate bunch of lines. Then changing the size of second grid would result on the direction of all 
lines. Here the problem is the length of lines which in this case would be different from each other, 
but I want to draw lines with the same length, and I need another strategy and that’s why I am going 
to use a <line SDL> component.  

A <line SDL> component draws a line by Start point(S), Direction (D), and Length (L). So the length of 
lines is controllable. Exactly what I need; I have the start points (cell’s midpoint), and length of my 
lines (whatever I like). What about the direction? I wanted to use the second grid-cell midpoints as 
the second point of lines so the direction of my lines is in the direction of the connecting lines of 
grid-cell mid points. To define these directions here I need some vectors instead of lines. That’s why I 
am going to make a set of vectors by these two point sets to create directions for my <line SDL> 
component. 

 

Fig.4.5. Creating vectors from the cells’ midpoints of the first grid toward the cells’ midpoints of the 
second grid by <vector 2pt> component (Vector > Vector > vector 2pt). This component creates 
vectors by start and end point of vectors. 
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Fig.4.6. The <line SDL> component generates bunch of lines from the grid cell midpoints that spread 
out into space because of the bigger size of the second grid. I can change the length of lines by 
<number slider> and I can change their direction by changing the size of second grid. 

 

For the next step, I want to add a polygon at the end of each line and extrude it towards the start 
point of the line to see the generative potentials of these curve components. To generate polygons I 
have to add some planes at the end point of my lines as base planes to be able to create polygons. 

 

 

 

Fig.4.7. By using an <end points> component (Curve > Analysis) and using these ‘end points’ as ‘origin 
points’ for a set of planes I could generate my base planes. Here I used <Plane Normal> component 
(Vector> Plane) which produces a plane by an origin point (lines’ end point) and a Z direction vector 
for the plane (a normal vector which is perpendicular to the plane). Here I used same vectors of the 
line direction as normal vectors for planes. 
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Fig.4.8. Adding a <Polygon> component and Using generated planes as base planes for polygons, we 
would have a set of polygons at the end of each line and perpendicular to it. As you can see, these 
polygons have same size but I want to apply a system of size differentiation to them to have a 
smooth shape change at the end. 

 

 

 

 

Fig.4.9. With a <List Length> component I get the number of my lines and the next <function> 
component which is the square root of the input (F(x)=Sqrt(x)), calculates the number of lines at each 
row. I used a <series> component with the start point and step size = 0.1 wile the number of values 
are coming from the number of rows. So I generated a list of gradually growing numbers equal to the 
number of polygons at each row. To be able to use these values for all polygons, I duplicated these 
data list with the amount of columns (here equal to the number of rows) and attached it to the 
Radios input of polygons. As you can see in the model, at each row, the size of polygons gradually 
changed and this pattern repeated up to the last one. 
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Fig4.10. In the last step, I used an <Extrude Point> component (Surface>Freeform) and I attached 
lines’ start points as the points towards which I wanted my polygons to extrude.  

 

 

 

 

 

 

 

Fig4.11. Now by using ‘Remote Control Panel’ from View menu, you can simply change the values of 
number sliders for different options and check the overall look of the model and select the best one. 
Don’t forget to uncheck the Preview option of unnecessary objects. 
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Fig.4.12. Final model 
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4_3_Combined Experiment: Swiss Re 

Today it is very common to design the concept of towers with associative modelling methods. It 
allows designers to generate differentiated models, simple and fast. There are so many potentials to 
vary the design product and find the best concept quite quickly. Here I decided to model a tower and 
I think the “Swiss Re” tower from ‘Foster and partners’ seems sophisticated enough for modelling 
experiments. 

First have a look at the project: 

 

Fig.4.13. Swiss Re HQ, 30 St Mary Axe, London, UK, 1997-2004, Photos from Foster and Partners 
website, http://www.fosterandpartners.com. 

 

Let me tell you the concept. I am going to draw a circle as outline of the tower and copy it to make 
some of the floors in which façade changes its curvature. Then I will rescale these floors to match 
the shape, and then I will make the skin of the tower by them. Finally for the façade’s structural 
elements I will add up section polygons and make these elements with them. To do this process, I 
am going to assume the size and portions and I will deal with the model with very simple geometries 
to make the process simple. 

 

Let’s start with floors. I know that the Swiss Re’s floors are circles that have some V-shaped cuts 
around them, but I just used a simple circle to make the outline of the tower. I want to copy these 
floors in certain heights which make it possible to play around proportions of the tower visually. As I 
said before, these points are located in positions of curvature change in façade. 
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Fig.4.14. A <circle> component with <number slider> as radios is the outline of the tower. This circle 
copied by <move> component along Z direction by a <Z unit> vector component for 6 times above 
itself. These numbers are provided by ‘set multiple numbers’ manually and they are assumptions 
about the distance of different parts of the tower (based on the size of the base circle). 

 

Although I generated these basic circles, all the same, but we know that all floors does not have 
same size, so we need to rescale them; If we look at the section of the tower we will see that from 
the circle which is grounded on earth, they first become bigger up to certain height, look constant on 
the middle parts and then become smaller and smaller up to the top point of the tower. So I need to 
rescale these sample floors, which means I have to provide a list of scale factors. Here again I am 
going to use another assumption about the scale factors of these sample floors. You could change 
these numbers to see if your project looks like the original design, more or less. 

 

 

Fig.4.15. I need a <scale> component (XForm > Affine > Scale) to rescale my sample floors. The 
<scale> component needs the geometry to rescale, centre for scaling and the factor of scaling. So I 
need to feed the geometry part of it by our floors or circles which is the output of the <move> 
component. The predefined centre of scaling is the origin point, but if I scale floors by the origin as 
the centre, they would displace in space because their height also rescales. I need the centre of 
rescaling at the same level at each floor. It should be for each one and exactly at the centre of floor. 
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That’s why I used a <Centre> component (Curve > Analysis > Centre) which gives me the centre of 
circles. By connecting it to the <scale> you can see that all circles would rescale in their level without 
displacement. 

 

Again I have to say that factors of scale are assumptions about the scale factors in different height 
samples that I made before. These values could be changed to see which combination best fits the 
overall view. They all set in one <number> component.  

 

 

Fig.4.16. Now if I loft all these sample floors by a <loft> component (surface > freeform > loft) the 
first image of the tower appears. Little by little I should uncheck the preview option of the previously 
generated points and curves to clean up the scene. 

 

 

Ok! Let’s go for façade elements. 

The facade’s structural elements are helical shapes that have cross section like two connected 
triangles, but again to make it simple, I just model the visible part of it which is almost like a triangle 
in plan. I need these sections to ‘loft’ them to create their volume. 

I want to generate these triangle sections on the façade. To do that, first I need to find the position 
of these triangles on the façade. I think if I generate a curve on the façade surface and divide it, it 
would be an acceptable place to posit all triangles before any transformation. 
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Fig.4.17. I used an <end points> component to get the start/end points of my sample floors. By 
attaching these points as the vertices to an <interpolate> component (curve > spline > interpolate) I 
would have a curve which is positioned on the façade. 

 

Fig.4.18. Here I divided the <interpolate> curve into 40 parts. The number of divisions helps the 
smoothness of the element when we want to adjust it on the façade. 

 

Fig.4.19. Now division points become base points to generate <polygon> on the façade. I set ‘sides’ to 
3 to generate triangles and size of the elements, ‘R’ part, is controllable by <number slider>. 
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Fig.4.20. Façade structural elements are spiral and turn around the skin, up to the top point of tower. 
To achieve this, I have to rotate all triangle sections gradually. I want to use <Rotate> component 
and for that, I need to provide angles of rotation. As I said, angles of rotation should be a list of 
numbers growing slowly. The <series> component here generates our angles of rotation and it has as 
many items as the <divide> component (points-triangles) has. So as the result, all section triangles 
rotate around the façade. 

 

 

Fig.4.21. Now if I <loft> all section triangles, you see a single façade element appears. Degree of 
rotation and size of element is controllable so we need to match it to the façade in its best look. 
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Fig.4.22. An <interval> component (as mentioned before, in new versions you can use Scalar > 
domain > domain) used to define numerical range from 0 to 360. This numerical range divided by a 
<range> component into 10 parts and the result is used as angle factors for a <rotate> component. 
So as it is shown in the image, the façade elements are distributed all around the base circle. 

Domains 

As I mentioned before, Domains (or intervals) are numeric ranges. They are real numbers from lower 
limit to upper limit. Since I said ‘real numbers’ it means we have infinite numbers in between which 
means we need different types of usage for these numerical domains. As we experimented before, 
we can divide a numerical range and get divisions as evenly distributed numbers between two 
extremes. 

Here I want to distribute façade elements all around the base circle. To do that, I need an interval to 
cover the whole base circle. 

 

Fig.4.23. Now if I <mirror> (XForm > Euclidian > Mirror) the rotated geometries by <YZ plane> (Vector 
> Constants > YZ plane) I would have the façade elements in a mirrored helical shape. So at the end I 
have a lattice shape geometry around the tower. 
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Fig.4.24. Preview the façade again, we have a rough representation of the ‘Swiss Re’ with an 
associative technique. 

 

 

Fig.4.25. To generate the geometry in Rhino, Select those components which created the desired 
geometry in the scene, and select ‘Bake Selected Objects’ from canvas toolbar or component context 
menu. 
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4.26. Final model. Although it is not exactly the same as the original one, but for a sketch model in a 
short time, it would work. 

 

 

 

 

 

 

 

 

 

Fig.4.27. Between main structural elements, 
there are other smaller scale structures and I 
think you can model them by yourself. Photo by 
the author. 
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4_4_On Attractors  

“Attractor is a set of states of a dynamic physical system towards which that system tends to evolve, 
regardless of the starting conditions of the system. A point attractor is an attractor consisting of a 
single state. For example, a marble rolling in a smooth, rounded bowl will always come to rest at the 
lowest point, in the bottom center of the bowl; the final state of position and motionlessness is a 
point attractor.” (Dictionary.com/Science Dictionary) 

 

 

Fig.4.28. Strange Attractor (Illustration from: http://www.cs.swan.ac.uk/~cstony/research/star/) 

 

In case of design and geometry, attractors are elements (usually points but could be curves or any 
other geometry) that affect other geometries in the space, change their behaviour and make them 
displace, re-orientate, rescale, etc. They can articulate the space around themselves and introduce 
fields of actions with specific radios of power. Attractors have different applications in parametric 
design, since they have the potential to change the whole objects of design constantly. Defining a 
field, attractors could also affect the multiple agent systems in multiple actions. The way they could 
affect the product and the power of attractors are all adjustable. We go through the concept of 
attractors in different occasions so let’s have some very simple experiments first. 

 

http://www.cs.swan.ac.uk/~cstony/research/star/�
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Fig.4.29. Base <point_grid> and <polygon>s and the <attractor_1>. 

The algorithm is so simple. Based on the <distance> between <attractor_1> and the <Pt-grid>, I want 
to affect the radius of the <polygon>, so the ‘relation’ between attractor and polygons define by 
their distance. 

I need a <distance> component to measure the distance between <attractor_1> and the polygon’s 
center or <pt_grid>. Because this number might become too big, I need to <divide> (Scalar > 
Operators > Division) this distance by a given number from <number slider> to reduce the power of 
the <attractor_1> as much as I want. 

Point Attractors 

I have a grid of points and I want to generate a set of polygons on them. I also have a point that I 
named it <attractor_1> and I draw a <circle> around it, just to realize it better. I want this 
<attractor_1> affects all my <polygon>s on its field of action. It means that based on the distance 
between each <polygon> and the <atractor_1>, and in domain of the <attractor_1>, each <polygon> 
responds to the attractor by change in its size. 

 

Fig.4.30. <Distance> divided by a number to control the ‘power’ of the <attractor_1>. Although I 
made a Cluster by <attractor_1> and its <circle> it seems that new versions of Grasshopper do not 
like clusters anymore so please use a simple <Pt> as <Attractor_1>. 
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Now if you connect this <div> component to the Radios (R) part of the <polygon> you can see that 
the scale of polygons increases when they go farther than the <attractor_1>. Although this could be 
good for the first time, we need to control the maximum radius of the polygons, otherwise if they go 
farther and farther, they become too big, intersecting each other densely (it also happens if the 
power of the attractor is too high). So I have to control the maximum radios value of the polygons 
manually. 

 

Fig.4.31. By using a <minimum> component (Scalar > Util > Minimum) and a user defined number, I 
am telling the algorithm to choose the value from the <div> component, if it is smaller than the 
number that I define as the maximum radios by <number slider>. As you can see in the image, those 
polygons that going to be bigger than the <max_rad> remain constant, and we can literally say they 
are not in the power field of attractor. 

Now if you change the position of the <attractor_1> in the Rhino workplace manually, you can see 
that all polygons get their radius according to the <attractor_1> position. 

 

 

Fig.4.32. Effect of the <attractor_1> on all polygons. Displacement of the attractor, affects all 
polygons accordingly. 
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Fig.4.33. With the same concept, I can displace polygons in Z direction based on the numbers coming 
from the <Min> component or changing it by mathematical functions, if necessary. So the usage of 
attractors is not limited to size only! 

 

 

Simple !!!!!!! I can do any other function on these polygons like rotate, change colour, etc. But let’s 
think what would happen if I had two attractors in the field. I make another cluster which means 
another point in Rhino associated with a <point> and <circle> in Grasshopper. 

It seems that the first part of the algorithm is the same. Again I need to measure the distance 
between this <attractor_2> and the polygons’ center or <pt_grid> and then divide it by the same 
<number slider> as <att_power> to control the power of attractor. 

 

 

Fig.4.34. Introducing second <attractor_2> and applying the same algorithm to it. 

 

Now we have two different data lists that include the distance from the polygon to each attractor. 
Since the closer attractor would affect the polygon more, I should find which one is closer and use 
that one, as the source of action. I will use a <min> component to find which distance is minimum or 
which point is closer. 
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4.35. Finding the closer attractor. After finding the closer one by <min> component, the rest of the 
process would be the same. Now all <polygon>s are being affected by two attractors. 

 

Fig.4.36. Again you can change the position of the attractors and see how all polygons reacting 
accordingly. 

We can add more and more attractors. The concept is to find the attractor which is closer for each 
polygon and apply the predefined effect. This concept is useful to deal with design issues with huge 
amount of small scale elements.  

 

My aim here is to design a porous wall for an interior space to have a multiple framed view to the 
other side. This piece of work could be cut from sheet materials. In my design space, I have a plane 
sheet (wall), two curves and bunch of randomly distributed points as base points of cutting shapes. I 
decided to generate some rectangles by these points, cut them out of a sheet, to make this porous 

Curve Attractors: Wall project 

Let’s complete this discussion with another example but this time by Curve attractors because in so 
many cases you need to articulate your field of objects with linear attractors instead of points.  
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wall. I also want to organize my rectangles by this two given curves so at the end, my rectangles are 
not just some scattered rectangles, but randomly distributed in accordance to these curves which 
have a level of organisation in macro scale and controlled randomness in micro scale. 

What I need is to generate this bunch of random points and displace them towards the curves, 
literally based on the amount of power that they receive from them. I also decided to displace points 
towards both curves, so I do not need to select closer one. Then I want to generate my rectangles 
over these points and finally I will define the size of these rectangles in relation to their distance to 
the attractors. 

 

Fig.4.37. Generating a list of randomly distributed <point>s and introducing attractors by two 
<curve> component (Params > Geometry > Curve) in the space of a sheet. I used an <interval> 
component to define the numeric interval between 0 (defined manually) and <number slider> for the 
range of random points (you should use <Domain> component in new versions as mentioned before). 
I would rename the <Pt> to the <Rnd_Pt_Grid>. 

 

Fig.4.38. When the attractor is a point, you can simply displace your geometry towards it. But when 
the attractor is a curve, you need to find a relative point on curve and displace your geometry 
towards that specific point. And this point must be unique for each geometry, because there should 
be one to one relation between attractor and any geometry in the field. If we imagine an attractor 
like a magnet, it should pull the geometry from its closest point to the object. So basically what I first 
need is to find the closest point of <Rnd_pt_grid> on both attractors. These points are the closest 
points on attractors for each member of the <Rnd_Pt_Grid> separately. I used <Curve CP> 
component (Curve > Analysis > Curve CP) which gives me the closest point of curve to my 
<Rnd_Pt_Grid>. 



Ch
ap

te
r_

4 

 

 

71  Transformations 

 

 

G
A

_V
er

.0
2 

 

Fig.4.39. In order to displace points towards the attractors, I need to define a vector for each point in 
<Rnd_Pt_Grid>, from point to its closest point on the attractors. Since I have the start and end point 
of the vector I use a <vector 2Pt> component. The second point of the vector (B port of the 
component) is the closest point on the curve. 

 

Fig.4.40. Now I connected all my <Rnd_Pt_Grid> to two <move> components to displace them 
towards the attractors. But if I use the vector which I created in the last step, it displaces all points on 
curves and that’s not what I want. I want to displace the points in relation to their distance to the 
attractor curves. If you look at the <Curve CP> component it has an output which gives us the 
distance between each point and the relevant closest point on curve. Good! We do not need to 
measure the distance by another component. I just used a <Function> component and I attached the 
distance as X and a <number slider> to Y to divide the X/Log(Y) to control the factor of displacement 
(Log function change the linear relation between distance and the resulting factor). 

Now I need to change the size of my vectors based on these newly created factors. Here I need a 
component to change the size of a vector and that’s why I used a <multiply> component (Vector > 
Vector > Multiply) which does that for me, so I attached the <vector 2P> as base vectors and I 
changed their size by the size factors, and I attached the resulting vectors to the <move> components 
which displace the <Rnd_Pt_Grid> in relation to their distance to the attractors, and towards them. 
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Fig.4.41. The <number slider> changes the power with which attractors displace objects towards 
themselves. 
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Fig.4.42. The next step is the generation of rectangles. I used a <rectangle> component 
(curve>primitive) and I attached the <move>d or displaced points to it as base points. But as I told 
you, I want to change the size of the <rectangle>s based on their distances to each <attractor> as 
well. So I used the same numerical values which I used for vector magnitude and I changed them by 
two functions. I divided these factors by 5 for the X value of the rectangles and I divided them by 25 
for their Y value. As you can see, rectangles have different dimensions based on their original 
distance from the attractor but they all have same ratio because of the above division factors. You 
can change these division factors (5, 25) to anything you want or use sliders to change them 
gradually to see which ratio is more delicate for your taste. 

 

Fig.4.43. Manipulating the variables would result in different models and I can choose the best one 
for my design purpose. 
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Fig.4.44. Model of the final design product as a porous wall system. Different shadow effects which 
can be considered as a factor to control the size of openings.  
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Chapter_ 5_Parametric Space 

Our survey in Geometry observes objects in space; Digital representation of forms and tectonics; 
different articulation of elements and multiple processes of form generations; from classical ideas of 
symmetry and pattern up to NURBS and Meshes. 

We are dealing with objects. These objects could be boxes, spheres, cones, curves, surfaces or any 
articulation of them. In terms of their presence in the space they generally divided into points as 0-
dimensional, curves as 1-dimensional, surfaces as 2-dimensional and solids as 3-dimensional objects.  

We formulate the space by coordinate systems to identify some basic properties like position, 
direction and measurement. The Cartesian coordinate system is a 3 dimensional space which has an 
Origin point O=(0,0,0) and three axis intersecting at this point which make the X, Y and Z directions. 
But we should consider that this 3D coordinate system also includes two-dimensional (flat space (x, 
y)) and one-dimension (linear space (x)) systems as well. What we know as parametric design, deals 
with these spaces. We need to go through these spaces to design ‘parametric’ with freeform curves 
and surfaces. While parametric design shifts between these spaces, we need to understand them as 
parametric spaces. 

 

 

5_1_One Dimensional (1D) Parametric Space 

The X axis is an infinite line which has some numbers associated with different positions on it. Simply 
x=0 means the origin and x=2.35 a point on the positive direction of the X axis which is 2.35 unit 
away from the origin. This simple, one dimensional coordinate system could be parameterised on 
any curve in the space. So basically not only the World X axis has some real numbers associated with 
different positions on it, but also any curve in the space has the potential to be parameterized by a 
series of real numbers that show different positions on the curve. So in our 1D parameter space 
when we talk about a point, it could be described by a real number which is associated with a 
specific point on a curve we are dealing with. 

It is important to know that since we are not working on the world X axis any more, any curve has its 
own parameter space and these parameters does not exactly match the universal measurement 
systems. Any curve in Grasshopper has a parameter space starts from zero and ends in a positive 
real number (Fig.5.1). 



Ch
ap

te
r_

5 

 

 

77  Parametric Space 

 

 

G
A

_V
er

.0
2 

 

Fig.5.1. 1D-parameter space of a curve. Any ‘t’ value is a real number associated with a position on 
the curve. 

 

So talking about a curve and working and referencing some specific points on it, we do not need to 
deal always with points in 3D space with p=(X,Y,Z) but we can recall a point on a curve by p=t as a 
specific parameter on it. And it is obvious that we can always convert this parameter space to a point 
in the world coordinate system. (Fig.5.2) 

 

Fig.5.2. 1D-parmeter space and conversion in 3D coordinate system. 
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5_2_Two Dimensional (2D) Parametric Space 

Two axis, X and Y of the World coordinate system deals with the points on an infinite flat surface in 
that, each point on this space is associated with a pair of numbers p=(X,Y). Quite the same as 1D 
space, here we can imagine that all values of 2D space could be traced not only on World’s 
coordinate flat surface, but also on any surface in space. So basically we can parameterize a 
coordinate system on a curved surface in space, and call different points of it by a pair of numbers 
here known as UV space, in which any point P on the surface is P=(U,V). Again we do not need to 
work with 3 values of P=(X,Y,Z) as 3D space to find the point and instead, we can work with the UV 
“parameters” of the surface. (Fig.5.3) 

 

Fig.5.3. UV and 2D parameter space. 

These “Parameters” are specific for each surface by itself and they are not generic data like the 
World coordinate system, and that’s why we call them parametric! Again we have access to the 3D 
equivalent coordinate of any point on the surface. (Fig.5.4) 

 

Fig.5.4. Equivalent of the point P=(U,V) on the world coordinate system p=(X,Y,Z). 
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5_3_Transition between spaces 

It is a crucial part in parametric thinking of design to know exactly which coordinate system or 
parameter space we need to work with, in order to design. Working with free form curves and 
surfaces, we need to provide data for parameter space but we always need to go back and forth for 
the world coordinate system to provide data for other geometry creations or transformations. It is 
more complicated in scripting, but since Grasshopper has a visual interface rather than code, you 
would simply identify which sort of data you need to provide for your design purpose. 

Here note that it is not always a parameter or a value in a coordinate system that we need in order 
to call geometries in Generative Algorithms and Grasshopper, sometimes we need just an index 
number to do it. If we are working with bunch of points, lines or whatever, and they have been 
generated as a group of objects, like point clouds, since each object associated with a natural 
number that shows the position of it in a list of all objects, we just need to call the number of the 
object as its ‘index’ instead of any coordinate system. The index numbering like array variables in 
programming is a 0-based counting system (Fig.5.5). 

 

 

Fig.5.5. Index number in a group of objects is a simple way to call one. This is a 0-based counting 
system which means numbers start from 0. 

 

So as mentioned before, in Associative modelling we generate our geometries step by step as some 
related objects and for this reason we go into the parameter space of each object and extract 
specific information of it and use it as the base data for the next steps. This could be started from a 
simple field of points as basic generators and ends up at tiny details of the resultant model, in 
different hierarchies. 
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5_4_Basic Parametric Components 

 

5_4_1_Curve Evaluation 
The <evaluate> component is the function that finds the point on a curve or surface, based on the 
parameter we feed. The <evaluate curve> component (Curve > Analysis > Evaluate curve) takes a 
curve and a parameter (a number) and gives back a point on curve on that parameter. 

 

 

Fig.5.6. The evaluated point on <curve> on specific parameter which comes from the <number 
slider>. 

 

 

Fig.5.7. We can use any <curve> that drawn in Rhino or in Grasshopper to <evaluate>. And you see 
that we can use <series> of numbers as parameters to <evaluate> instead of one parameter. In the 
above example, because some numbers of the <series> component are bigger than the domain of the 
curve, you see that <Evaluate> component gives me warning (becomes orange) and that points are 
located on the imaginary continuation of the curve. 
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Fig.5.8. Although the ‘D’ output of the <curve> component gives us the domain of curve (minimum 
and maximum parameters of the curve), alternatively we can feed an external <curve> component 
from Param > Geometry and in its context menu, check the Reparameterize option. It sets the 
domain of the curve from 0 to 1. So basically I can track all <curve> long by a <number slider> or any 
numerical set between 0 and 1 and not be worry that parameters might go beyond the numerical 
domain of the curve. 

 

There are other useful components for parameter space on curves in Curves > Analysis / Division 
that we would talk about them later. 

 

 

 

 

5_4_2_Surface Evaluation 
While for evaluating a curve we need a number as parameter (because curve has a 1D-space) for 
surfaces we need a pair of numbers as parameters (U, V), with them, we can evaluate a specific 
point on a surface. We use <evaluate surface> component (Surface > Analysis > Analysis) to evaluate 
a point on a surface on specific parameter. 

We can simply use <point> components to evaluate a surface by using it as UV input of the <Evaluate 
surface> (it ignores Z dimension) and you can track your points on the surface just by X and Y parts 
of the <point> as U and V parameters. 
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Fig.5.9. A point <Evaluate>d on the <surface> based on the U,V parameters coming from the 
<number slider> with a <point> component that make them a pair of Numbers. Again like curves you 
can check the ‘Reparameterize’ on the context menu of the <surface> and set the domain of the 
surface 0 to 1 in both U and V directions. Change the U and V by <number slider> and see how this 
<evaluate>d point moves on the surface (I renamed the X,Y,Z inputs of the component to U,V,- 
manually). 

 

 

Fig.5.10. Since we need <points> to evaluate a <surface> as you see we can use any method that we 
used to generate points to evaluate on <surface> and our options are not limited just to a pair of 
parameters coming from <number slider>, and we can track a surface with so many different ways. 

 

 

Fig.5.11. To divide a surface (like the above example) in certain rows and columns we can use <Divide 
surface> or if we need some planes across certain rows and columns of a surface we can use <surface 
frame> both from Surface set under Util paenl. 
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5_4_3_Curve and Surface Closest Point 
We always don’t have the parameter to look for points, some times we have the point and we want 
to know its parameter for further uses. This is when finding closest point comes to play. <Curve CP> 
and <surface CP> components (curve/surface closest point) are two components that help us to do 
that.  

 

Fig.5.12. <Curve Cp> and <Surface CP> help us to find the parameter of a point on a curve or surface. 
There are other components that you need to feed them with these parameters.  

 

5_5_On Object Proliferation in Parametric Space 

For so many design reasons, designers use surfaces to proliferate some other geometries on them. 
Surfaces are flexible, continues two dimensional objects that represent acceptable bases for this 
purpose. There are multiple methods to deal with surfaces like Penalisation, but here I am going to 
start with one of the simplest one and we will discuss about some other methods later. 

We have a free-form surface and a simple geometry like a box. The question is, how we could 
proliferate this box over the surface, in order to have a differentiated surface i.e. as an envelope, in 
that we have control of the macro scale (surface) and micro scale (box) of the design separately, but 
in an associative way. 

The method is like this: In order to accomplish the task, we should divide the surface into desired 
parts and generate our boxes on these specific locations on the surface and re-adjust them if we 
want to have local manipulation of these objects. 

Generating the desired locations on the surface is easy. We can divide surface or we can generate 
some points based on any numerical data set that we want. 

About the local manipulation of proliferated geometries, again we need some numerical data sets 
which could be used for transformations like rotation, local displacement, resize, adjustment, etc. 
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Fig.5.13. A free-form, reparameterized, <surface> being <evaluate>d by a numeric <range> from 0 to 
1, divided by 30 steps by <number slider> in both U and V direction. (Here you can use <divide 
surface> but I used the <point> component to remind you all point-generation techniques from 
chapter two are possible options to insert into these experiment). 

 

 

Fig.5.14. As you see the <evaluate> component gives ‘normal’ and ‘plane’ of any evaluated points on 
the surface. I used these planes or frames to generate series of <box>es on them while their sizes are 
being controlled by <number slider>s. the <box> component (surface>primitive> center box) needs 
center of the box and its length in X,Y and Z directions 

 

 

In order to manipulate boxes locally, I just decided to rotate them. I want to set the rotation axis 
parallel to the U direction of the surface and based on the situation of this simple surface I am going 
to choose the XZ plane as the base plane for their rotation (Fig.5.15). 
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Fig.5.15. Local rotation of box. 

 

 

 

Fig.5.16. The <rotate> component needs three inputs. First is the geometry which means <box>es. 
The second item is rotation angle. I want to rotate them by random values (you can rotate them 
gradually or any other way) so I want to generate a set of <random> numbers and I set the Number 
of random values as much as boxes. So I just used a <list length> component to realize how many 
<box>es I have and attached it to the ‘N’ input of the <random> and attached the random values as 
angles of rotation to the <rotate> component. Finally to define the plane of axis, I generated <XZ 
plane>s on any point that I <evaluate>d on the <surface> and I attached it to the <rotate> 
component. 

Don’t forget to uncheck the Preview of the previously generated objects to enhance the 
performance of the process. 



Ch
ap

te
r_

5 

 

 

86  Parametric Space 

 

 

G
A

_V
er

.0
2 

 

 

 

 

 

 

 

 

 

Fig.5.17. Final geometry. 
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Fig.5.18. Try to combine different concepts in your projects. Here instead of random values for 
rotation of boxes, I used a point attractor and set its distance from each box as the rotation factor 
and as you see, new results are shown in the experiment. These are techniques for local manipulation 
of the boxes, but you know that you could apply changes to the global scale as well. 

 

 

 

Non-uniform use of evaluation 

During a project this idea came to my mind that why should I always use the uniform distribution of 
points over a surface and add components to it? Can I set some criteria and evaluate my surface 
based on that and select specific positions on the surface? Or since we use U,V parameter space and 
incremental data sets (or incremental loops in scripting) are we always limited to a rectangular 
division on surfaces? 

There are couple of questions regarding the parametric tracking of a surface but here I am going to 
deal with a simple example to show how in specific situations we can use some of the U,V 
parameters of a surface and not a uniform rectangular grid over it. 
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Fig.5.19. I introduced two general surfaces to Grasshopper by <srf_top> and <srf_bottom> as space 
covers and I Reparameterized them. I also generated a numerical <range> between 0 and 1, divided 
by <number slider>, and by using a <point> component I <evaluate>d these surfaces at that <points>. 

 

 

Columns Example 

I have two Free-form surfaces as covers for a space and I am thinking of creating a social open space 
in between. I want to add some columns between these surfaces but because they are free-form 
surfaces and I don’t want to make a grid of columns, I decided to limit the column’s length and add 
as many places as possible in certain positions with height limit. I want to add two inverted and 
intersected cones as columns in this space, just to make a simple shape. 

 

 

Fig.5.20. Next, I generated bunch of <line>s between all these points, but I also measured the 
distance between any pair of points. 
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Fig.5.21. Now I need to extract my desired lines from the list. Here I used a <dispatch> component 
(Logic >Llist > Dispatch) to select my lines from the list. A <dispatch> component needs Boolean data 
which is associated with the data from the list, to send those who associated with True to the A 
output and those associated with False, to the B output. The Boolean data comes from a simple 
comparison function. In this <function> I compared the line length with a given number as maximum 
length of line (x>y, x=<number slider>, y=<distance>). Any line length less than the <number slider> 
creates a True value by the function and passes it through the <dispatch> component to the A 
output. So if I use lines coming out the <dispatch> A output I am sure that they are all smaller than 
the certain length, so they are my columns. 

 

 

 

Fig.5.22. The geometry of columns is two inverted cones which are intersecting at their tips. Here 
because I have the axis of the column, I want to draw two circles at the end points of the axis and 
then extrude them to the points on the curve which make this intersection possible. 
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Fig.5.23. By using an <end points> component I can get both ends of columns. So I attached these 
points as base points to make <circle>s with given radios. You already know that these circles are flat 
but our surfaces are not flat. So I need to <project> my circles on main surfaces to find their adjusted 
shape. I used a <project> component (Curve > Util > Project) for this reason. B part of the <project>s 
connected to the top and bottom surface.  

 

 

Fig.5.24. The final step is to extrude these projected circles towards the specified points on column’s 
axis (Fig.5.23). I used <extrude point> component and then I attached <project>ed circles as base 
curves. For the extrusion point, I attached all columns’ axis to a <curve> component and I 
‘Reparameterized’ them, then I <evaluate>d them in two specific parameter of 0.6 for top cones and 
0.4 for bottom cones. 
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Fig.5.25. Although in this example, again I used the grid based tracking of a surface, I used additional 
criteria to choose some of points and not all of them uniformly. 

 

 

Fig.5.26. Final model. 

 

The idea of using Parameter space of curves and surfaces to proliferate objects on them has so many 
options and methods. Don’t stick to one of them and try to explore more. We will see a bit more. 
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5_6_On Data Trees 

Talking about parametric space and using related components, now it is time to open up a new 
subject about data management in Grasshopper called ‘Data Tree’, which little by little you might 
need it when working with complex models, especially in parametric space of curves and surfaces. 

One of the great potentials of generative algorithms is that they enabled us to design and manage 
hundreds of objects together associatively. Working with huge amount of objects, sometimes we 
need to apply commands to all of them and sometimes we need to extract one item and apply a 
command to it. So we need to have access to our objects and manage our data (objects) in different 
ways. 

Imagine we have 5 curves in our design space and we divided them into 10 parts. Now we want to 
extract all second points of these curves and connect them together with a new interpolated curve. 

 

 

 

Fig.5.27. A <curve> component with 5 curves, all are <Divide>d by 10. If you select index number 1 
with <item> component from division points, you see that all second points of curves are being 
selected, not just the second point of the first line. Great!. But if you attach these points to an 
<interpolate> to draw a curve, you see the <interpolate> shows error and does not draw anything! 

 

Here to understand the problem lets introduce a useful component and observe the situation. This 
component is <Param Viewer> from Params>Special. Let’s compare the result: 
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Fig.5.28. The <Param Viewer> component shows some other data information inside components 
which is the reason of the error in <interpolate>. 

 

What you see in <Param Viewer> is the concept of Data Tree in Grasshopper. As you can see in the 
Figure.5.28 the <curve> component has 5 items but when these curves <divide>d and generated 
some points for each curve, points has been sorted into different data lists called Branches. This 
means that the result of the <divide> component is not just one list of data comprised of 55 points, 
but now we have five lists of data each has 11 points inside. So the main data of the ‘Tree’ has been 
divided into ‘Branches’ in order to facilitate further usage and easier access to them in our design. 
That’s why when we select <item> index 1, it selects items with index 1 in each list. 

 

Fig.5.29. <Param Viewer> with ‘Draw Tree’ option checked in their context menu to show the 
difference between data branches in each component. 
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Now, why the <interpolate> component cannot draw a curve? What is the problem? Let’s have a 
closer look at the information we gathered from our situation: 

 

 

Fig.5.30. <Param Viewer> and <Panel> of A:curves and B:selected index 1 points. 

In the first image of the Figure.5.30 the <Param viewer> of the <curve> component shows one main 
branch of data. If you look at its <Panel>, you see there is a list of curves under the title of { 0 }. Here 
in Grasshopper { } is the symbol for data tree and shows the branch that the object is positioned in. 
So all curves in the first image under the { 0 } are situated in the main branch. If you go back to the 
Figure.5.28 you see that for the <curve>‘s <param viewer>, it says (Paths = 1) which means we have 
only one branch of data and in this branch { 0 } (N = 5) we have 5 items. 

But in the second image of the Figure.5.30 we can see that the data in the <item> component listed 
under five different branches: { 0:0 }, { 0:1}, … { 0:4 } and there is one point at each list. If you again 
check the Figure.5.28 you see that the third <param viewer> has 5 branches (paths = 5) and each 
branch of data has one item (N = 1 for all branches). This means that the data has been divided into 
different branches and when transferred into <interpolate> component, they are separate from 
each other and <interpolate> component cannot draw polyline by five separated points. 
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How can we solve this problem? 

 

Fig.5.31. To solve this problem I used a <Flatten> component (Logic>Tree) 
which as it sounds, converts data from multiple branches to one branch which 
is visible in <param viewer>. As you can see in the second <panel>, now we 
have five points under the branch of { 0 } and <interpolate> component can 
draw a polyline by these five points. 

 

To summarize and get the concept, we should understand that while working with multiple objects 
in different levels, data has hierarchical structure in branches and each branch of data has its own 
path as an index number which shows the unique address of that branch( i.e. { 0:1}). It is important 
to know that working with list management components is affected by this concept and these 
components work on each branch as a separate list. We might need to generate branches of data by 
ourselves or converge branched data into one branch, or other types of data management that I try 
to use them in later experiments.  

 

Fig.5.32. Data Branches on a ‘DATA Tree’. 
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Let’s have another example to wrap up the subject: 

I want to design a porous surface like what I sketched in Figure.5.33 based on one given surface. I am 
going to describe the process a bit fast to see the final bit. 

 

Fig.5.33. Sketch of the desired surface. 

 

To design this porous surface, I want to generate couple of small lines in top and bottom edges of a 
surface to loft them together. This would generate some small surfaces which all together make the 
general look of my porous surface. I should take care of direction of my small lines to be able to 
control the gradual differentiation of surfaces or let’s say the general porosity. 

 

Fig.5.34. I introduced a generic <surface> into canvas and I exploded it by <BRep Components> 
(Surface>Analysis) to have access to its edges. Then I selected the bottom and top edge with <item> 
by index 0 and 2. 
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Fig.5.35. I used the bottom edge to <offset> (Curve>Util), and I also changed the direction of the top 
edge with <Flip> (Curve>Util) because I know that the bottom and top edge curves are not in the 
same direction. I used <divide> component to divide these edge curves and have multiple points. (We 
can use one <divide> component but I don’t like to make it complex now). 

 

 

 

Fig.5.36. A <line> component is used to connect all bottom division points to all bottom-offset 
division points. Another <line> is used to connect all top-edge division points to their next points in 
the list (shift offset = 1). 
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Fig.5.37. now if I use these <line> components to <loft>, you see that a surface being generated 
which is not my design purpose, even using <weave> component does not help in this situation. 

 

Fig.5.38. looking at <param viewer> of <line> components, we can see that both components have 
only one branch of data and when lofted, it lofts all of them together and not as separated pairs of 
lines. But here we want our lines to be in different data lists to be treated as single data and when 
lofted, they become pairs of lines. 
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Fig.5.39. To solve this problem here I used a useful component which is <Graft> (Logic>Tree>Graft 
Tree). As you can see, as a result of this component, data lists in both <line> components have been 
divided into branches, one branch for each item in the list. Now <loft> component lofts each line from 
the first data list to an associated line in the second data list. And we can see that the resultant 
geometry is a porous surface as I sketched. 

 

Here, opposite to the first example, we have to sort our data in different branches in order to get 
result in multiple geometries otherwise it was only one continuous surface. 

 

Fig.5.40. Here I should remind you that if you again want to draw an interpolate curve on specific 
points which you evaluated on these surfaces, since all these surfaces are in different branches of 
data and the resultant evaluated points would be in different branches of data as well, in order to 
draw a curve, you need to <Flatten> the data list again, make one branch of data for points and pass 
it to the interpolate to draw your curve. 

 

The point is to realize that in different components and design situations we have to provide data in 
branches or in one branch and there are couple of components in Logic>Tree that help us to do so. 
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Fig.5.41. Final model of the porous surface.  
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6_1_Deformations and Morphing 

Geometry is not always about pure objects. We need to change the portions and general conditions 
of volumes and other geometrical products in order to design objects. Deformation and Morphing 
are some of the tools to do that. 

Deformation and Morphing are among the powerful functions in the realm of free-form design. By 
deformations we can twist, shear, bend, … geometries and by Morphing we can deform geometries 
from one boundary condition to another.  

Let’s have a look at a simple deformation. If we have an object like a sphere, we know that there is a 
bounding-box (cage) around it and manipulation of this bounding-box could deform the whole 
geometry. 

 

Fig.6.1. Deformation of an object by its Bounding-box (cage). 

 

Based on angel, movement, etc. we might call it shear or bend or free deformation. For any 
deformation function, we might need the whole bounding-box, or just one of its sides as a plane or 
even one of the points to deform. If you check different deformation components in Grasshopper 
you can easily find the base geometrical constructs to perform deformations. 

Morphing in animation means transition from one picture to another smoothly or seamlessly. Here 
in 3D space it means deformation from one state or boundary condition to another. Morphing 
components in Grasshopper work in the same fashion. Here for example <Box morph> component 
(XForm>Morph) deforms an object from a reference box (Bounding Box) to a target box, or <Surface 
morph> component works with a surface as a base, on that you can deform your geometry, on the 
specific domains of the surface and height of the object. 

The first one which is <Box Morph> and the next one is <Surface Morph> both from XForm tab 
under the Morph panel, and there are couple of additional components there, that could possibly 
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provide data for these components in our designs. Since we have couple of commands that deform a 
box, if we use these deformed boxes as target boxes then we can deform any geometry in 
Grasshopper by combination with Box Morph component.  

As you see in Figure 6.2 we have an object which is introduced to Grasshopper by a <Geometry> 
component. This object has a bounding-box around it which I draw here just to visualize the 
situation. I also draw another box by manually feeding values. 

 

 

 

Fig.6.2. Initial object (sphere) and manually fed box. 

 

 

 

Fig.6.3. A <Box morph> component (XForm > Morph > Box morph) deforms an object from a 
reference box to a target box. Because I have only one geometry I attached it as the geometry and 
also as bounding box or reference box to the component (if there are different geometries or in other 
cases, you can use <Bounding box> component (Surface > Primitive > Bounding box) as well). I 
unchecked the preview of the <Box> component to see the morphed geometry inside it better. 
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Fig.6.4. Now if you simply change the size of the target box you can see that the morphed geometry 
would change accordingly. 

 

Fig.6.5. Here you see that instead of one box, if I produce bunch of boxes, I can start to morph my 
object more and more. As you see, differentiated boxes by the <series> component in their Y 
dimension, caused differentiation in morphed objects as well. 

 

6_2_On Panelization 

One of the most common applications of morphing functions is Panelization. The idea of 
panelization comes from the division of a free-form surface geometry into small parts and pieces 
especially for fabrication issues. Although free-form surfaces are widely being used in car industry, it 
is not an easy job for architecture to deal with them in large scales. Benefit of panelization is to 
divide a surface into small parts, called components which are easier to fabricate and transport and 
also more controllable in terms of precision in final product. 

It is also possible sometimes to divide a curve surface into small flat parts and then get the overall 
curvature by accumulation of the flat geometries which could be then fabricated from sheet 
materials. There are multiple issues regarding the size, curvature, adjustment, etc. that we try to 
discuss some of them. 
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Let’s start with a simple surface and a component as a module to panelize this surface. 

 

Fig.6.6. A Generic double-curved surface for panelization. 

 

Fig.6.7. Component that I want to proliferate on the surface……. Not special, just as an example!!! 

 

 

Fig.6.8. First of all, I need to introduce the surface and module as Grasshopper components. Based on 
the possible components in the Grasshopper, the idea is to generate couple of boxes on the surface 
and use these boxes as target boxes and morph the module into them. So I introduced a <box 
morph> and I used the module as geometry and as bounding-box. Now I need to generate target 
boxes to morph the component into them. 
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Fig.6.9. The component that I need to make target boxes is <surface box> (XForm > Morph > Surface 
box). This component generates multiple boxes over a surface based on the intervals on the surface 
domain and height of the box. So I just attached the surface to it and the result would be target 
boxes for the <box morph> component. Here I need to define the domain interval of the boxes, or 
actually divide the numeric interval of the surface in its U and V direction to generate boxes. 

 

 

 

Fig.6.10. In order to divide the surface domain, I used <divide interval2> which tells the <surface box> 
that how many divisions in U and V directions I need. Another <number slider> defines the height of 
target boxes which means height of morphed components. 

 

 

So basically the idea is simple. We produce a module (a component) and we design our general 
surface. Then we generate certain amount of boxes over this surface (as target boxes) and then we 
morph the module into these boxes. After all we can change the number of elements in both U and 
V direction and also change the module which updates automatically on the surface. 
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Fig.6.11. Final surface made up of our base modules 

 

 

 

6_3_Micro Level Manipulations 

Although it is great to proliferate a module over a surface, it still seems a very generic way of design. 
We know that we can change the number of modules, or change the module by itself, but the result 
is a generic surface and we don’t have local control of our system. 

Now I am thinking of making a component-based system that we could apply more local control and 
avoid designing generic surfaces which are not responding to any local, micro-scale criteria. 

In order to introduce the concept, let’s start with a simple example and proceed towards a more 
practical one. We used the idea of attractors to apply local manipulations to a group of objects. I am 
thinking of applying the same method to design a component based system with local manipulations 
by an attractor. The idea is to change the components size (in this case, their height) based on the 
effect of a point attractor. 
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Fig.6.12. Lets look at the ingredients: A double-curved surface introduced as <Base_Srf> and a cone 
introduced as <component> to the Grasshopper, a <divide interval2> for surface divisions, and a 
<bounding box> as the reference box of the <component>. Here I used a <scale> component for my 
bounding box. Later on, if I change the size of the bounding box, I can change the size of all 
<component>s on the <base_srf> because of the change in reference box. 

 

The <surface box> component has the height input which asks for the height of boxes in the given 
intervals. The idea is to use relative heights instead of constant one. So instead of one number as 
height, we can make a relation between the position of each box to the attractor’s position and 
generate different numbers as associative heights. 

What I need is to measure the distance between each box and the attractor. The technical problem 
here is that there is not any box generated yet, so I need a point on surface at the center of each box 
to measure the distance. 

 

Fig.6.13. Here I used the same <divide interval2> which I want to use for <surface Box> for an 
<Isotrim> component (Surface > Util > Isotrim). This component divides the surface into sub-surfaces. 
By these sub-surfaces I can use another component which is <BRep Area> (Surface > Analysis > BRep 
area) to use the by-product of this component which is ‘Area Centroid’ for each sub-surface. I 
measured distances of these points (area centroids) from the <attractor> to use them as reference 
factors for height of the target boxes in <surface box> component. 
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Fig.6.14. Now I divided the measured distances by a given number from <number slider> to control 
the effect of the attractor and I used the result as ‘height’ input to generate target boxes with 
<surface box> component. The surface comes from the <base_srf>, the <divide interval2> used as 
surface domain and the heights coming from the relation of box positions and the attractor. As you 
see, the height of boxes differ, based on the position of the <attractor> point. 

 

 

 

Fig.6.15. The only remaining part, connecting the <component>, <scale>d bounding box and <surface 
box> to a <morph box> component which proliferates component over the surface. By changing the 
scale factor, you can change the size of the all components and like always, position of the attractor 
is also manually controllable. 
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Fig.6.16. Final model. 

 

 

 

As you see, the size of components started to accept local manipulations, based on an external 
property which is a point attractor here. Although the idea is a simple attractor, the result could be 
interesting and the idea is to show that we could differentiate reference boxes and get 
differentiated results as well. Now we know that the morphing concept and panelization is not 
always generic. Having tested the concept, let’s go for another practical experiment. 



Ch
ap

te
r_

6 

 

 

111  Deformations and Morphing 

 

 

G
A

_V
er

.0
2 

6_4_On Responsive Modulation 

The idea for the next design experiment is to modulate a given surface with control over each 
module which means any module of this system, has to be responsible for some certain criteria. So 
even more than regional differentiation of the modules, here I want to have a more specific control 
over my system by given criteria which could be environmental, functional, visual or any other 
associative behaviour that we want our module be responsible for.  

In the next example, in order to make a building’s envelope more responsive to the host 
environment, I wanted the system to be responsive to the sun light. In your experiments it could be 
wind, rain or internal functions or any other criteria that you are looking for, even combination of 
them. 

Here I have a surface, simply as the envelope of a building which I want to cover with two different 
types of components. The first one is closed and does not allow penetration of the sun light and the 
other has opening. These components should be proliferated over my envelope based on the main 
direction of the sun light at the site. I set a user defined angle to say the algorithm that for the 
certain degrees of sun light we should have closed components and for the others, open ones. 

Grasshopper definition does not have anything new, but it is the concept that allows me to make 
variations over the envelope instead of making a generic surface. Basically when the surface is free-
form and it moves around and has different orientations, it has different angles with the main sun 
light at each part, so based on the angle differentiation between the surface and sun light, this 
variation in components happens in the system. 

 

Fig.6.17.First sketches of responsive modules of a façade system. 
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Fig.6.18. External surface of building as envelope which is aimed to panelize. 

 

Ingredients:  

 

 

Fig.6.19. Two different types of components for panelization. 
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Fig.6.20. The first step is similar to the previous experiments. I introduced <surface> and I used 
<divide interval2> to divide it in U and V directions and I generated target boxes by <surface box>. I 
also used <isotrim> with the same intervals as boxes to find the positions of boxes on the surface and 
I used <BRep area> to find the centroid of this area (which is selected in green). At the same time I 
used a <curve> component to introduce the main sun-light angle of the site and whit its <end points> 
I made a <vector 2pt> which specify the direction of the sun light. You can manipulate and change 
this curve to see the effect of sun light on components in different directions. 

As you can see from the first image, there is a surface as envelope which is divided into parts for 
component generation and there is a sun-light vector. I want to know angle between this vector and 
the surface at the position of each component. I have to have a unique result for angle calculation, 
and the best way is to use Normals of surface which are unique at each point. A Normal is a vector 
which is perpendicular to the surface at a specific point. So I can use that to check the angle for each 
component. 

 

Fig.6.21. in order to evaluate the angle between sun-light and surface, I want to measure this angle 
between sun light and normals of the surface at the position of each component. So I can decide for 
each range of angles what sort of component would be suitable. So after generating the center 
points, I need normals of the surface at those points. That’s why I used a <surface CP> to get the UV 
parameters of points on the surface and use these parameters to <evaluate> the surface at those 
points to actually get the normals of surface at those points. 
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Fig.6.22. Now I used an <angle> component (Vector > Vector > Angle) to evaluate the angle between 
the sun direction and the façade. Then I converted this angle to degree and I used a <function> to see 
whether this angle is bigger than the <max_angle> or not. This function (x>y) gives me Boolean data, 
True for smaller angles and False for bigger angles. 

 

 

Fig.6.23. Based on the Boolean data comes from the angle comparison, I <dispatch> the data which 
are target boxes (I have the same amount of target box as the center points and normals so I can use 
target boxes instead of points). So basically I divided my target boxes in two different groups whose 
difference is the angle they receive the sun light. 
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The rest of the algorithm is simple and like what we have done before. I just need to morph my 
components into the target boxes, here for two different ones. 

 

 

Fig.6.24. Here I introduced two different components as single geometries and I used two <morph 
box> components each one associated with one part of the <dispatched> data to generate <C_close> 
or <C_open> components over the façade. 

 

 

6.25. Now if you look closer, you can see that in different parts of the façade, based on its curvature 
and direction, different types of components are generated. 
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Fig.6.26. Final model. The bifurcation of target boxes (and components) could be more than two in 
the algorithm. It depends on design and criteria that we use.  

 

 

We can think about a component based façade, in which some components are closed, and some 
are open, which open ones have adjustable parts that orientate towards external forces, and even 
reflect to the internal functions of the building and so on and so forth. You see that the idea is to 
have micro scale control over the system and avoid generic designs. And it is clear that still we have 
global (surface by itself) and regional (component by itself) control over the system as well. 
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7_1_Parametric NURBS Surfaces 

We have had some experiments with surfaces in previous chapters. We used Loft and Pipe to 
generate some surfaces. We also used free form surfaces and some surface analysis components 
accordingly. Usually by surfaces, we mean Free-Form NURBS surfaces. In many cases generating 
surfaces depends on other basic geometries like curves that we provide for our surface geometries 
or sometimes points. There are multiple surface components in Grasshopper and if you have a little 
bit of experience working with Rhino you should already know how to generate your surface 
geometries by them. 

Surface geometries seems to be the final products in our design, like facades, walls etc. and that’s 
why we need lots of effort to generate the data like points and curves that we need as the base 
geometries. Here I decided to design a very simple schematic building just to indicate that the 
multiple surface components in the Grasshopper have the potential to generate different design 
products by very simple basic constructs. I know the design process by itself might not be satisfying , 
here I just want to concentrate on using new components. 

 

 

Parametric Tower 

In the areas of Docklands of Thames in London, close to the Canary Warf, where the London’s high 
rises have the chance to live, there are potentials to build some towers. I assumed that we can 
propose one together, and this design could be very simple and schematic, here just to test some of 
the basic ideas of working with free-form surfaces. 

Let’s have a look at the area. 

Fig.7.1. Arial view, Canary Warf, London (image: www.maps.live.com, Microsoft Virtual Earth). 

 

The site that I have chosen to design my project is in the bank of Thames, with a very prestigious 
view to the river and close to the entrance square of the centeral area of Canary Warf (Westferry 
Road). I don’t want to go through site specifics so let’s just have a look at where I am going to 
propose my tower and continue with geometrical issues. 

http://www.maps.live.com/�
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Fig.7.2. Site of the proposed tower. 

 

 

Manual drawings 

There are multiple ways to start this sketch. I can draw the ground floor and copy it above and start 
to manipulate them and add details. I am sure that you already searched the web and got different 
ideas about designing a tower associatively with this technique. Here I decided to use some surface 
components so the technique might not be appropriate but the aim is to expand our experiments. 

I have a vague idea in mind. My tower has a general glass surface which is covered by some linear 
elements in façade, but because I don’t like to design a conventional tower, I also want to have some 
hollow spaces on tower skin, scattered across the façade. These volumes would intersect façade’s 
linear elements so these elements should be cut then. I also want to design a public space close to 
the river and connected to the tower with the same elements as façade, continuous from tower 
towards the river bank. 

As you see in Figure 7.3 I drew my base curves manually in Rhino. These curves correspond to the 
site specifics, height limitations, site’s shape and borders, etc, etc. The first curve was drawn and 
then it mirrored for the next corner and again mirrored for the next one and so on. Another two 
curves drawn as the borders of the public space, they started from the earth level and then went up 
to be parallel to the tower edges. These curves are experimental. You can draw whatever you like 
and go for the rest of the process. 



Ch
ap

te
r_

7 

 

 

120  NURBS Surfaces and Meshes 

 

 

G
A

_V
er

.0
2 

 

Fig.7.3. Basic lines of the tower’s site.  

 

Fig.7.4. For the first step, I imported these four corner curves into Grasshopper by a <curve> 
component and then I used <divide curve> to divide these curves into 40 parts as floors of the tower. 
As you see, the resultant division points are sorted in four different data branches. 

Basic façade elements 

 

Fig.7.5. Now I have to draw basic lines by these division points on façade to use them for façade 
elements. Here I want to draw lines from division points of each curve to the same point of the next 
curve. To do that, I used an <Explode Tree> called <Bang> component (Logic > Tree > Explode Tree) to 
have access to different branches of data separately. I added <line>s from each branch points to the 
next ones. 
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Fig.7.6. In this step I added my hollow spaces for the façade with random distribution. They are 
ellipsoids who introduced in Grasshopper all together by a <Geometry> component. I also <Merge>d 
all previously generated lines. 

 

 

Fig.7.7. In this step, I <trim>ed all <merge>d lines with these <Geo>s. <Trim> component gives me the 
trimmed part, inside and outside of the trimming area, here I used the outside part. I extruded those 
parts as the linear façade elements. 
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Fig.7.8. There is a closed <curve> that connects four corners of the tower in plan. Here because I need 
them to generate different surfaces, I <exploded> the curve to get its segments and I also used 
<graft> to generate one branch for each curve. Since I have planner section curve and two edge 
curves that define the boundary of the façade on each face, I want to use a <Sweep 2> component to 
create façade surface by sweep 2 rail.  

 

 

Fig.7.9. I introduced a <sweep 2> component to generate general façade surfaces. I used <graft>ed 
plan curves as Section curves for sweep command. Rails should be edge curves. The <receiver> 
component connected to the edge curves. I <graft>ed it once and I also <Shift>ed and <graft>ed it 
again to generate all first and second rail curves associated with plan Section curves. 

 

!! Note: if you do not get the same result as illustrated, the order of your edge curves (Rails) is not 
associated with the order of your plan curves (Section curves) and you need to change the order of 
your edge curves in the list either manually by re-assigning them to the <curve> component by 
different order or by shifting the list in Grasshopper. 
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Fig.7.10. In this step I want to subtract hollow space <Geo>s from the previously generated façade 
surface. Since the normal direction of the surface is important in this command, I <Flip>ed the surface 
normal direction, and then I used a <Solid Difference> component (Intersect > Boolean > Solid 
Difference) and the result is the main surface while <Geo>s has been removed. 

 

Fig.7.11. With the same method, I introduced both curves of the public space, divided them, exploded 
them and draw lines between them. I can connect this <line> component to the same <extrude> 
component as façade elements to generate identical geometries. 

 

Fig.7.12. After generation of all geometries, bake <Difference> and <Extrude> components. 
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Fig.7.13. Final sketch model. 
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7_2_Geometry and Topology  

Up to now we have used different components and worked with NURBS surfaces. But as mentioned 
before there are other types of surfaces which are useful in other contexts. It is not always the 
smooth beauty of NURBS that we aimed for, but we might need more precise control, easier 
processing or simpler equations. Beside the classical surface types of revolution, ruled or pipes, we 
have different free form surfaces like Besier or B-Splines. But here I am going to talk a little bit about 
Meshes which are different types of surfaces. 

Meshes are another type of free-form surfaces but made up of small parts (faces) and accumulation 
of these small parts makes the whole surface. So there is no internal, hidden mathematical function 
that generates the shape of the surface, but these faces define the shape of the surface all together. 

If we look at a mesh, first we see its faces. Faces could be triangle, quadrant or hexagon. By looking 
closer, we can see a grid of points which make these faces. These points are basic elements of a 
mesh surface. Any tiny group of these points (for example any three in triangular mesh) make a face 
with which the whole geometry become surface. These points are connected together by straight 
lines. 

There are two important issues about meshes: position of these points and connection between 
these points. Position of points related to the geometry of mesh and connectivity of points related 
to the topology. 

 

 

Fig.7.14. Topology and Geometry. 

Geometry vs. Topology 

While Geometry deals with the position of objects in space, Topology deals with their relations. 
Mathematically speaking, topology is a property of object that transformation and deformation 
cannot change it. So for instance circle and ellipse are topologically the same and they have only 
geometrical difference. Have a look at Figure 7.14 As you see there are four points which are 
connected to each other. In the first image, both A and B have the same topology because they have 
the same relation between their points (same connection). But they are geometrically different, 
because of displacement of one point. But in the second image, the geometry of points is the same 
but their connectivity is different and they are not topologically equivalent. 
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The idea of topology is very important in meshes. Any face in a mesh object has some corner points 
and these corner points are connected to each other with an order in a same way for all faces of the 
mesh object. So we can apply any transformation to a mesh object and displace vertices of the mesh 
in space even non-uniformly, but the connectivity of mesh vertices should be preserved to preserve 
faces otherwise it collapses. 

 

 

Fig.7.15. Both red and grey surfaces are meshes with the same faces and vertices, in the grey one, 
vertices are displaced, make another geometrical configuration of mesh, but connectivity of mesh 
object is not changed and both surfaces are topologically the same. 

 

 

 

Knowing the importance of topological aspects of mesh objects, they are powerful geometries while 
we have bunch of points and we need a surface type to represent them as a continuous space. 
Different types of algorithms that work with points could be applied to a mesh geometry since we 
save the topology of the mesh. For instance, using finite element analysis or specific applications like 
dynamic relaxation, and particle systems, it is easier to work with meshes than other types of 
surfaces since the function can work with mesh vertices. 

Mesh objects are simple to progress and faster to process; they are capable of having holes inside 
and discontinuity in the geometry. There are also multiple algorithms to refine meshes and make 
smoother surfaces. Since different faces could have different colours initially, mesh objects are good 
representations for analysis purposes (by colour) as well. 

There are multiple components that deal with mesh objects in ‘mesh’ tab in Grasshopper. Let’s start 
a mesh from scratch and push the primary limits that we are facing. 
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7_3_On Meshes 

I have a group of points and I want to create a surface by these points. In this example the group of 
points is simplified in a grid structure. I am thinking of a vertical grid of points that represent the 
basic parameters of a surface which is being affected by an imaginary wind pressure. I want to 
displace these points by wind factor (or any force that has a vector) and represent the resultant 
deformed surface. Basically by changing the wind factor, we can see how the resultant surface 
changes. 

 

Fig.7.16. The first step is simple. By using a <series> component with controlled number of points 
<N_pt>, and distance between them <distance_pt> I generated a grid of cross referenced <point>s. 

 

The pressure of the imaginary wind force, affects all points in the grid but I assumed that the force of 
wind increases when goes up, so the wind pressure becomes higher in bigger Z values of the 
surfaces. And at the same time, wind force affects the inner points more than the points close to the 
edges. Points on the edges in the plan section do not move at all (fix points). 

 

Fig.7.17. Diagram of the wind force affected the surface. A: section; the vertical effect of the force, B: 
plan; the horizontal effect. 
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Basically I need two different mechanisms to model these effects, one for section diagram and 
another for plan. I simplified equations just to mimic the way we want the force affects points. For 
the first mechanism the concept is a simple mathematical equation; I just used (X^2) while X is the Z 
value of the point being affected by the force. So for each point I need to extract the Z coordinate of 
the point. 

To make everything simple, I assumed that the force direction is in the Y direction of the world 
coordinate system. So for each point on the grid, I need to generate a vector in Y direction and I set 
its force by the number that I receive from the Z coordinate of that point. 

For the second diagram we need a bit more of an equation to do. Let’s have a look at part one first. 

 

Fig.7.18. The Z coordinates of points extracted by a <decompose> component and then powered by 
(x^2) and divided by a given <number slider> just to control the general movement. The result is 
factors to <multiply> the force vector (Vector > Vector > Multiply) which is simply a world <unit Y> 
vector. 

 

Fig.7.19. If I displace points by these vectors you can see the resultant grid of points that satisfy the 
first step of this task. 

Now if we look at the second part of described forces, as I said, I assumed that in the planner 
section, points on the edges are fixed and points on the middle displace more than others. Figure 
7.20 shows this displacement for each row of the point grid. 
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Fig.7.20. Displacement of points in rows (planner view). 

 

Since I have force vectors for each point, I need to control them and set a value again, to make sure 
that their displacement in the planner section is also met the second criteria. So for each row of the 
points in the grid, I want to generate a factor to control the force vector’s magnitude. Here I 
assumed that for points in the middle, the force vector’s power are maximum that means what they 
are, and for points on the edges, it become zero means no displacement and for the other points a 
range in between. 

 

Fig.7.21. For the second mechanism, I need a <range> of numbers between 0 and 1 to apply to each 
point; 0 for the edge, 1 for the middle. I need a range from 0 to 1 from one edge to the middle and 
then from 1 to 0 to go from middle to other edge. I need this <range> component generates values as 
much as the number of points in each row.  

I set the <N_pt> to the even numbers, and I divided it by 2, then minus 1 (because the <range> 
component takes the number of divisions and not number of values). You see the first <panel> shows 
four numbers from 0 to 1 for the first half of the points. then I <reverse>d the list and I merged these 
two lists together and as you see in the second <panel> I generated a list from 0 to 1 to 0 and the 
number of values in the list is the same as number of points in each row. 

The final step is to generate these factors for all points in the grid. So I <duplicate>d the points as 
much as <N_pt> (number of rows and columns are the same). Now I have a factor for all points in the 
grid based on their positions in their rows. 
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Fig.7.22. Now I need to <multiply> force vectors again by new factors. If I displace points by these 
new vectors, we can see how two different mechanisms affected the whole point grid. 

 

Actually this part of the example needed a little bit of analytical thinking. In reality, methods like 
Particle Spring Systems or Finite Element Analysis, use the concept that multiple vectors affecting 
whole points in the set and points affecting each other as well. So when you apply a force, it affects 
all points and points affecting each other simultaneously. These processes should be calculated in 
iterative loops to find the resting position of the whole system. Here I just make a simple example 
without these effects and I just wanted to show a very simple representation of such a system 
dealing with multiple forces and I used very simple mathematical equations, which in real subjects 
are a bit more complicated! The idea is more about the mesh representation of this process, so let’s 
go for mesh generation part. 

 

 

Mesh  

Fig.7.23. Mesh generating. Now if you simply add a <mesh> component (Mesh > Primitive > Mesh) to 
the canvas and connect displaced points to it as vertices, you will see that nothing happening in the 
scene. We need to define faces of the mesh geometry to generate it. Faces of mesh are actually 
series of numbers who just define the way these points are connected together to make the faces of 
each surface. So here vertices are geometrical part of the mesh but we need the topological 
definition of the mesh to generate it as well.  
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Every four corner point of the grid, define a quadrant face for the mesh object. If we look at the 
point grid, we see that there is an index number for each point in the grid. We know each point by 
its index number instead of coordinates in order to deal with its topology. 

 

Fig.7.24. Index numbers of points in the grid. 

To define mesh faces, we need to call every four corners that we assumed to be a face and put them 
together and give them to the <mesh> component to be able to make mesh surface. 

 

Fig.7.25. In a given point grid, a simple quadrant face defines by an order of points that if you 
connect them by a curve, you can make a face. This curve starts from a point in the grid, goes to the 
next point, then goes to the same point of the next row and then goes to the back column point of 
that row, and by closing this curve, you see the first face of the mesh finds its shape. Here the first 
face has points [0,1,6,5] in its face definition. The second face has [1,2,7,6] and so on. 
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To define the whole mesh faces, we should find the relation between these points and then make an 
algorithm that generates these face matrices for us. 

If we look at the face matrix, we see that for any first point, the second point is the next in the grid. 
So basically for each point (n) in the grid, the next point of the face is (n+1). Simple! 

For the next point of the grid, we know that it is always shifts one row, so if we add the number of 
columns (c) to the point index (n) we should get the point at the next row (n+c). So for instance in 
the above example we have 5 columns so c=5 and for the point (1) the next point of the mesh face is 
point (n+c) means point (6). So for each point (n) as the first point, the third point would be (n+1+c). 
That’s it. 

For the last point, it is always stated in one column back of the third point. So basically for each point 
(n+1+c) as the third point, the next point is (n+1+c-1) which means (n+c). So for instance for point (6) 
as the third point the next point becomes point (5). 

All together for any point (n) in the grid, the face that starts from that single point has this points 
as the ordered list of vertices: [n, n+1, n+1+c, n+c] while (c) is the number of columns in the grid. 

 

 

Fig.7.26. After defining all mesh faces, the mesh can be generated. 

 

Looking at the mesh vertices, there is a bit more to deal with. If you remember the ‘Triangle’ 
example of chapter 3, there was an issue to select points that could be the first points in the grid. If 
you look at the grid of points in the above example, you see that points on the last column and last 
row could not be start points of any face. So beside the fact that we need an algorithm to generate 
faces of the mesh object, we need a bit of data management to generate the first points of the 
whole grid and pass these first points to the algorithm and generate mesh faces. 
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So basically in the list of points, we need to omit the points of the last row and last column and then 
start to generate face matrices. To generate the list of faces, we need to generate a list of numbers 
as index of points. 

 

Fig.7.27. Generating index number of the first points in the grid with a <series> component. The 
number of values in the series comes from the <N_pt> as the number of columns (same as rows) and 
by using a function of < x * (x-1)> I want to generate a series of numbers as <columns*(rows-1)> to 
generate the index for all points in the grid and omit the last row. The next step is to <cull> the index 
list by the number of columns (<N_pt>) to omit the index of points in the last column as well. 

 

 

 

 

Fig.7.28. Final index number of the possible first points of mesh faces in the grid (with 8 points in 
each column). 
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Fig.7.29. A <Mesh quad> component (Mesh > Primitive > Mesh quad) is in charge of generating faces 
in Grasshopper. I just attached the list of first numbers to the first point of the <quad>. 

 

Now this is time to generate the list of indices for the faces: 

 

 

Fig.7.30. While (n) is the index of the first point and (c) is the number of columns, the second point is 
(n+1), the third point is ((n+1)+c) (the index of second point + number of columns), and the last point 
is ((n+1+c)-1)  (the index of the third point -1). 
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Fig.7.31. The resultant mesh. 

 

7_4_On Colour Analysis 

To finish this example, let’s have a look at how we can represent our final mesh with colours as a 
medium for analysis purposes. There are different components in Grasshopper that provide us 
colour representations and these colours are suitable for our analysis purposes. 

Here in this example, again to bring a concept, I simply assumed that at the end, we want to see the 
amount of deviation of our final surface from the initial position (vertical surface). I want to apply a 
gradient of colours start from points which remained fix with bottom colour up to points which has 
the maximum amount of deviation from the vertical position with the higher colour of the gradient. 

Simply, to find the amount of deviation, I need to measure the final state of each point to its original 
state. Then I can use these values to assign colour to the mesh faces base on these distances. 

 

Fig.7.32. If I go back, I have the initial point grid that we generated in the first step and I also have 
the final displaced point grid that I used to generate the mesh vertices. I can use a <distance> 
component to measure distance between the initial position of points and their final position to see 
deviations of points. 
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Fig.7.33. For our analysis purpose I want to use a <Gradient> component (Params > Special > 
Gradient) to assign gradient of colours to the mesh. I attached my <distance> values to the 
parameter part (t) of the <Gradient> and I attached it to the Colour input of the <mesh> component. 

 

 

But to complete the process I need to define the lower limit and upper limit of gradient range (L0 
and L1). Lower limit is the minimum value in the list and upper limit is maximum value in the list and 
other values are being divided in the gradient in between. To get the lower and upper limit of the list 
of deviations I need to sort the data and get the first and last values in that numerical range. 

 

 

 

Fig.7.34. By using a <sort> component to sort distances, I get the first item of the data list (index= 0) 
as lower limit and the last one (index= <list length> - 1) as the upper limit of the data set (deviation 
values) to connect to the <gradient> component to assign colours based on this range. 
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Fig.7.35. By clicking on the small colour icon on the corner of the <gradient> component we can 
change the colours of the gradient. 

 

Fig.7.36. Right-click on the component and on the context pop-up menu you have more options to 
manipulate your resultant object, different types of colour gradients to suit the graphical 
representation of your analysis purpose. 

 

Fig.7.37. Different gradient thresholds. 
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7_5_Manipulating Mesh objects as a way of Design 

Depends on the object and purpose of the modelling, I personally prefer to get my mesh object by 
manipulating a simple mesh geometry instead of generating a mesh from scratch since defining 
point set and face matrices are not always simple. By manipulating, I mean we can use a simple 
mesh object, extract its components and change them and then again make a mesh with varied 
vertices and faces. So I do not need to generate points as vertices and matrices of faces. 

Let’s have a look at a simple example. 

 

 

 

 

 

 

 

Fig.7.38. In this example, I simply used a <mesh plane> component and I extracted its data by using a 
<mesh components> to have access to its vertices and faces. Then I displaced vertices along Z 
direction by random values powered by a <number slider> and again attached them to a <mesh> 
component to generate another mesh. Here I also used a <cull pattern> component and I omitted 
some of the faces of original mesh and then I used them as new faces for making another mesh. The 
resultant mesh has both geometrical and topological difference by its initial mesh and can be used 
for other design purposes. 

 

Geometry Manipulations 

Topology Manipulations 
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This idea of geometrically manipulating the vertices and topologically changing the faces has so 
many different possibilities that you can use in your design experiments. Since the mesh object has 
the potential to omit some of its faces and still it remains as a surface, the idea of making porous 
surfaces could be pursued with different ways. 

 

 

Fig.7.39. Resultant manipulated mesh (just a random case!). 

 

 

 

 

 

Fig.7.40. This is a sketch of a manipulated mesh! 
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Triangulation 

 

 

Fig.7.41. Examples of Triangulation components. 

 

There are multiple components under the Triangulation panel in Mesh tab which provides useful 
algorithms like Delaunay or Voronoi or Convex Hull for design purposes. These internal algorithms 
could be useful to design complex objects and the most important point about them is that they use 
point sets to generate their output geometries. They are easy to explore and you can find lots of 
examples on-line and I don’t want to go in-depth to describe them. So go ahead and explore them. 
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Chapter_8_Fabrication 

Today there is a growing interest on practice with Computer Aided Manufacturing and digital 
fabrication. Because of changes and new trends in design processes, it seems a crucial move and one 
of the ‘Musts’ in the field of design, to shift into the realm of digital fabrication. Any design decision 
in digital space, should be tested in different scales to show the ability of fabrication and assembly. 
Since it is obvious that the new design processes and algorithms do not fit into the traditional 
building techniques, designers now try to use modern technologies for fabrication and they adapt 
their design products to meet necessities. From the moment that CNC machines started to serve the 
building industry up to now, a great relation between digital design and physical fabrication have 
been made and many different technologies and machineries being invented or adjusted to do these 
types of tasks. 

In order to design building elements and fabricate them, we need to have a brief understanding of 
fabrication processes for different types of materials and know how to prepare our design outputs 
for them. Based on the object we designed and material we used, assembly logic, transportation, 
scale, etc. we need to provide suitable data from our design product and get desired output, to feed 
machineries. If traditional way in realization of a project made by Plans, Sections, Details, etc. today, 
we need data and code to transfer to machines to fabricate a project. 

The point here is that designer should involve in providing required data, because it is highly 
interconnected with design object. Designer sometimes should use the feedback of the fabrication-
data-preparation for the design re-adjustment. Sometimes the design object should be changed in 
order to fit the limitations of the machinery or assembly. 

Up to this point, we already know different potentials of Grasshopper to alter the design, and these 
design variations could be in favour of fabrication as well as other criteria we did. I just want to open 
the subject and touch some of the points related to the data-preparation phase, to have a look at 
possibilities of data extraction from design project for fabrication but we know that the subject is 
widely open for different techniques, machineries, materials, etc. 

 

8_1_Datasheets 

In order to prepare data to realize an object, sometimes we simply need a series of measurements, 
angels, coordinates and generally numerical data. There are multiple components in Grasshopper to 
compute measurements, distances, angels, etc. The important point is the correct and precise 
selection of points that we need to address for any specific purpose. We should be aware of any 
geometrical complexity that exists in design to choose desired positions for measurement purposes. 
The next point is to find positions that give us proper data for our fabrication purpose and avoid to 
generate lots of tables of numbers which could be time consuming in big projects but useless at the 
end. Finally we need to export data from 3D software to spreadsheets and datasheets and 
sometimes we need to manipulate this data in a way needed. 
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Fig.8.1. Paper Strips, first try. 

 

In the next step I tried to start with a very simple set up and understand the geometrical logic and 
use it as the base for digital modelling. I assumed that by jumping into digital modelling I would not 
be able to make physical model and I was sure that I need to test the early steps with paper. 

My aim was to use three paper strips and connect them, one in the middle and another two, in both 
sides of middle one, but with longer length, restricted at their ends to the middle strip. This could be 
the basic module to repeat and generate bigger assemblies. 

Paper Strip Project 

The idea and technique of paper strips attracted me for some investigations. To understand the logic 
of assemblies I started with very simple combinations for first level and I tried to add these simple 
combinations together as the second level of assembly. It was interesting in the first tries but soon 
became out of order and the result was not what I assumed. So I tried to be more precise to deal 
with the complex geometries at the end. 

 

Fig.8.2. simple paper strip combination to understand connections and logic. 
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Fig.8.3. First modelling method with middle line and interpolated curves as side strips. 

 

But it seemed so simple and straightforward. So I decided to add a gradual size-differentiation in 
connection points so it would result in a bit more complex geometry. Now let’s move into 
Grasshopper and continue the discussion by modelling. I will try to describe the definition briefly and 
go to the data parts. 

 

Digital modelling 

Here I wanted to model the paper strip digitally, after my basic understanding of the physical one. 
From the start point I need a very simple curve in the middle as the base of my design and I can 
divide it and by culling these division points (false, true) and moving True ones perpendicular to the 
middle curve and using all these points (moved ones and false ones) as the vertices for two 
interpolated curves I can model this paper strips almost the same as what I described. 

 

Fig.8.4. The <curve> component is the middle strip which is a simple curve in Rhino. I reparameterized 
it and I want to evaluate it in decreasing intervals. I used a <range> component and I attached it to a 
<Graph Mapper> component (Params > Special > Graph Mapper) to generate evaluation parameters. 
A <Graph mapper> remaps a set of numbers in many different ways by choosing a particular graph 
type. As you see, I evaluated the curve with this <Graph mapper> with parabola graph type and the 
resultant points on the curve are clear. You can change the type of graph to change the mapping of 
numeric range (for further information go to the component help menu). So I <Evaluate>d those 
parameters on the initial curve (<receiver> connected to the <curve>).  
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Fig.8.5. After remapping the numerical data and evaluating points, I want to find midpoints for every 
two points of previous set. Here I have to find the parameters of the curve, between each basic point 
and the next one, to evaluate. Since I have parameter of every first point, I <shift>ed the data to find 
next points. I also used <cull> with frequency of <list length> to exclude last item of the main list to 
have same items as <shift>ed list. The <function> component finds the parameter in between 
(f(x)=(x+y)/2) and you see the resultant parameters being evaluated (<receiver> connected to the 
<crv>). 

 

Fig.8.6. Now I want to move midpoints and make deviated vertices of the side strips. These points 
must move always in a perpendicular direction to the middle curve. So in order to move them, I need 
vectors, perpendicular to the middle curve at the position of each point. I already have the Tangent 
vector at each point, by <evaluate> component but I need the perpendicular vector. 

 

We now that a Cross product of two vectors is a vector always perpendicular to both of them 
(Fig.8.7). For example unit Z vector could be the cross product of unit X and Y vectors. Our middle 
curve is a planer curve so we know that the Z vector at each point of the curve would be always 
perpendicular to the curve plane. Tangent vector at each point of curve is situated at the plane of 
curve as well. So if I find the cross product of Tangent vector and unit Z vector at each point, the 
result would be a vector perpendicular to the middle curve which is always lay down on the curve’s 
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plane. I used Tangent of the point from <evaluate> Component and a <unit Z> vector to find the 
<XProd> of them which I know that is perpendicular to the curve even I manipulate it manually.  

Another trick! I used the numbers of <Graph Mapper> as power factors of these Z vectors to have 
increasing factors for movements of points as well, so the longer the distance between points, the 
bigger their displacements. 

 

 

Fig.8.7. Vector cross product. Vector A and B are in base plane. Vector C is the cross product of A and 
B and it is perpendicular to the base plane so it is also perpendicular to both vectors A and B. 

 

 

Fig.8.8. Now I have both basic points (first evaluated points) and moved points. I <weave>d them 
together to have a sorted list of data. Now if I use these points to generate an <interpolate>d curve, 
you see that the basic curve of the side strip is there. 
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Fig.8.9. Using a <Mirror Curve> component (XForm > Morph > Mirror Curve) I can mirror the 
<interpolate>d curve by middle <curve> which is connected to the <receiver> so I have both side 
paper strips with the same concept. 

 

Fig.8.10. Now if I connect middle curve and side curves to an <extrude> component I can see my first 
paper strip combination with decreasing spaces between connection points. 

 

Fig.8.11. I can simply start to manipulate the middle strip and see how Grasshopper updates three 
paper strips which are connected to each other, or I can change my sliders and check the resultant 
geometry to select one, which is close to the physical model. 
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After I found a configuration that I want to create paper strip model with, I need to extract 
dimensions and measurements to build my model with that data. Although it is easy to model all 
these strips on paper sheets and cut them with laser cutter but here I like to make the process more 
general and get the initial needed data, so I am not limited myself to one specific machine and one 
specific method of manufacturing. You can use this data as generic manufacturing codes!!!! 

By doing a simple paper model, I know that I need the position of connection points on strips and it 
is obvious that these connection points are in different length in left_side_strip, right_side_strip and 
middle_strip. So if I get the division lengths from Grasshopper I can mark them on strips. 

Since strips are curves, the <distance > component does not help me to find measurements. I need 
distance of points from each other or from the start point of strip but on curve, so when I use it on 
unfolded paper strip, it gives me the correct position. 

To get these lengths I need to find parameters of the connection points on strips (curves) and 
evaluate their position and the same component would give me the distance of those points from 
start point of the curve as well. 

 

 

Fig.8.12. As you see I used the first set of evaluated points that I called them main curve points on the 
middle strip (initial curve). The (L) output of the component gives me distances of points (connection 
points) from the start points of the strip for middle strip. I also used these points to find their 
parameter on one side curve. So I used a <curve cp> component to find parameters of points on curve 
(t). So I used these parameters to evaluate the curve and find their distances from the start point. I 
would do the same for the next side strip as well. 

 

 

Make sure that the direction of all curves should be the same and check where is the start point of 
the curve (the origin of measurements). 
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Fig.8.13. Right-click on the <panel> component and click on the ‘Stream Contents’. By this command 
you would be able to save your data in different formats and use it as a general numeric data. Here I 
will save it with simple .txt format and I want to use it in Microsoft Excel. 

Exporting Data 

 

Fig.8.14. On Excel sheet, simply click on an empty cell and go to the ‘Data’ tab and under the ‘Get 
External Data’ select ‘From Text’. Then select the saved txt file from the address you saved your 
stream contents and follow the simple instructions of excel. These steps allow you to manage your 
different types of data, how to divide your data in different cells and columns etc. 
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Fig.8.15. Now you see that your data placed on the Excel data sheet. You can do the same for the rest 
of your strips. 

 

 

 

 

Fig.8.16. Table of the distances of connection points alongside the strip. 
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If you have a list of 3D coordinates of points and you want to export them to Excel, there are 
different options for that. If you export 3D coordinates with the above method you will see there are 
lots of unnecessary brackets and commas that you should delete. You can also add columns by 
clicking in the excel import text dialogue box and separate these brackets and commas from the text 
in different columns and delete them but again because the size of numbers are not the same, you 
will find characters in different columns that you could not align separation lines for columns easily. 

In such case I simply recommend you to decompose your points to their components and export 
them separately. It is not a big deal to export three lists of data instead of one. 

 

Fig.8.17. Using <decompose> component to get the X, Y and Z coordinates of the points separately to 
export to a data sheet. 

 

I strongly recommend you to professionally work with Excel and other spreadsheets because they 
help us in data managements in different ways and situations. 

 

 

 

Enough for modelling! I used provided data to mark my paper strips and connect them together and 
create a simple model. To prove it even to myself, I did all process with hand !!!! to show that 
fabrication does not necessarily mean laser cutting (but sometimes HAM, as Achim Menges (EmTech 
AA tutor) once used for Hand Aided Manufacturing!!!! For fun). I just spent an hour to cut and mark 
all strips but the assembly process took a bit longer which should be done by hand anyway. 
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Fig.8.18. Final paper-strip project. 
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8_2_Laser Cutting and Cutting based Manufacturing 

The idea of laser cutting sheet materials is very common these days to fabricate complex 
geometries. There are different ways that we can use this possibility to fabricate objects. Laser 
cutter method suits objects that built with developable surfaces or folded ones. One can unfold a 
digital geometry on a plane and simply cut it out of a sheet and fold the material to build it. It is also 
suitable to make complex geometries that could be reduced to separate pieces of flat surfaces and 
one can disassemble the whole model digitally in separate parts, nest them on flat sheets, add the 
overlapping parts for connection purposes (like gluing) and cut and assemble physically. It is also 
possible to fabricate double-curved objects by this method. It is well being experimented to find 
different sections of any ‘Blob’ shaped object, cut it at least in two directions and assemble these 
sections together usually with Bridle joints and make rib-cage shaped models. 

Since laser cutter is a generic tool, there are various methods, but all together the important point is 
to find a way, to reduce geometry to flat pieces to cut them from a sheet material, no matter paper 
or metal, cardboard or wood and finally assemble them together. 

Among different ways discussed here, I want to test one of them in Grasshopper and I am sure that 
you can experiment other methods easily. 

 

 

Fig.8.19. Here I have a surface and I introduced this surface to Grasshopper as a <Geometry> 
component, so you can introduce any geometry that you have designed or use any Grasshopper 
object that you have generated. 

 

Free-Form Surface Fabrication 

I decided to fabricate a free-form surface to have some experiments with preparing and nesting 
pieces of a free-form object to cut and all other issues we need to deal with. 

Ribs as Sections  

In order to fabricate this generic free-form surface I want to create sections of this surface, nest 
them on sheets and prepare files to be cut by laser cutter. If the object that you are working on has a 
certain thickness then you can cut it, but if the model does not have any thickness, you need to add 
a thickness to cutting parts. 
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Fig.8.20. in the first step I used a <Bounding Box> component to find the area that I want to work on. 
I also used a <Box corners> component (Surface > Analysis > Box corners) to find the opposite corners 
of box and use them as limits of range that I want to generate my ribs alongside the geometry. So by 
calculating length and width of the box, I used these numbers as domains that I want to divide by a 
<range> component. Basically by using <number slider> I can simply divide the length and width of 
the box in desired parts. 

 

 

Fig.8.21. My aim is to generate planes alongside the length and width of the box as much as ribs I 
need. First I generated two planes, one <YZ plane> and one <XZ plane>, first one perpendicular to the 
length of the box and second one perpendicular to the width. I generated both of them on the first 
corner of the box by connecting them to the A output of the <box corners>. Now I can generate <Unit 
X> and <Unit Y> vectors alongside the length and width of the box, and by connecting the <range> 
components to them, I can make vectors for all division points. Then I can <move> XZ and YZ planes 
by these vectors and generate series of frames alongside length and width of the object’s bounding 
box. 
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Fig.8.22. Frames generated alongside the length and width of the object’s bounding box, 
perpendicular to the edge. 

 

 

 

Fig.8.23. Now if I find the intersection of these planes and the surface, I actually generated the ribs 
and this is the half way to fabricate the surface. Here I used a <BRep | Plane> section component 
(Intersect > Mathematical > BRep | Plane) to solve this problem. I used the <Geometry> (my initial 
surface) as BRep and planes of previous step, as planes to feed the section component. 
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Fig.8.24. Intersections of frames and surface, resulted in series of curves on the surface. 

 

 

Fig.8.25. Paper sheets and an underlying surface to represent them in Grasshopper. 

 

I am going to use <Orient> component (XForm > Euclidian > Orient) to nest my curves into the 
surface which represents sheets for cutting purpose. If you look at the <orient> component you see 
that we need the object’s plane as reference plane, and target plane which should be on the sheet. 
So here I should generate these planes to nest my cutting objects. Since I used planes to intersect 
the initial surface and generate section curves, I can use them again as reference planes, so I only 
need to generate target planes. 

Nesting  

The next step is to nest these curve sections on a flat sheet to prepare them for cutting process. 
Here I drew a rectangle in Rhino with my sheet size. I copied this rectangle to generate multiple 
sheets overlapping each other and I drew one surface that covers all these rectangles. 
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Fig.8.26. I introduced cutting surface to Grasshopper and I used a <surface Frame> component 
(Surface > Util > Surface frames) to generate series of frames across the surface. We can generate 
planes, as much as our geometry needs. 

 

 

 

Fig.8.27. Orientation. I connected section curves as base geometries, and planes that I used to 
generate these sections as reference geometry to the <orient> component. But still a bit of 
manipulation is needed for the target planes. If you look at the results of <surface frame> 
component, you see that if you divide U direction by 1, it would generate 2 columns to divide the 
surface. So I have more planes than needed. That’s why I <split>ed the list of target planes by the 
number that comes from the number of reference curves. So I only use planes as much as curves that 
I have. Then I moved these planes 1 unit in X direction to avoid overlapping with the sheet’s edge. 
Now I can connect these planes to the <orient> component and you can see that all curves now 
nested on the cutting sheet.  
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Fig.8.28. nested curves on the cutting sheet. 

 

Fig.8.29. After nesting curves into cutting sheet, as I told you, because our object does not have any 
thickness, in order to cut it, we need to add thickness to it. That’s why I <offset> curves with desired 
height and I also add <line>s to both ends of these curves and their offset ones to close the whole 
drawing so I would have complete ribs to cut. 

Generating Ribs 

Generating Joints (Bridle Joints) 

The next step is to generate ribs in other direction and make joints to assemble them after being cut. 
Although I used the same method of division of the bounding box length to generate planes and 
then sections, but I can generate planes manually in any desired position as well. So in essence if you 
do not want to divide both directions and generate sections, you can use other methods of 
generating planes instead of evenly dividing the edge. 
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Fig.8.30. As you see here, instead of previously generated planes, I used manually defined planes for 
sections in the other direction of the surface. One plane generated by X value directly from <number 
slider> and another plane comes from the mirrored plane on the other side of the surface (surface 
length (y) – number slider (x)). Section of these two planes and surface is being calculated for the 
next steps. 

 

Now I can orient these new curves on another sheet to cut, which has the same process as the other 
one. So let’s generate joints for the assembly of parts which is important. 

 

Fig.8.31. since we have curves in two directions, we can find their points of intersection to design 
joints on that positions. That’s why I used <CCX> components (Intersect > Physical > Curve | Curve) to 
find the intersect position of these curves which means the joint positions (The <CCX> component is in 
cross reference mode). 
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I need a bit of drawing to prepare these joints to cut. I am thinking of preparing bridle joints so I 
need to cut half of each rib on the joint position to be able to join them at the end. First I need to 
find these intersection positions on nested ribs and then draw lines for cutting. 

 

 

Fig.8.32. If you look at the outputs of the <CCX> component you would see that it gives us the 
parameter in which, each curve intersects with the other one. So I can <evaluate> nested or 
<orient>ed curves with these parameters to find the joints’ positions on cutting sheets. 

 

 

Fig.8.33. Now we have the joint positions, we need to draw them. First I drew lines with <line SDL> 
component with the joint positions as start points, <unit  Y> as direction and I used half of the rib’s 
height as the length of the line. So as you see each point on nested curves now has a tiny line 
associated with it. 
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Fig.8.34. Next step, draw a line in X direction from the previous line’s end points with the length of 
the <sheet_thickness> (depends on the material). 

 

 

 

Fig.8.35. To draw the third line I need to find the point where this line connects to the base curve 
because I don’t know its length exactly. In this step, I added another <line SDL> with Y direction and 
minus value to draw the third line, but a bit longer than needed, to cross the base curve, to find the 
intersection point. The <receiver> connected to the oriented curves. So I used <CLX> (Intersect > 
Mathematical > Curve | line>) to find intersection positions with base curve. I <Flatten>ed these 
points and added <line>s, again from the end point of the second line to this intersection point. As a 
result, joints are completed now. I have to complete this for both side joints. 
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Fig.8.36. Using a <join curves> component (Curve > Util > Join curves) now as you can 
see I have a slot shaped <join curve> that I can use for cutting as bridle joints inside 
ribs. I am applying the same method for the other end of the curve (second series of 
joints on the other side of the oriented curve). 

 

 

Fig.8.37. Ribs with joints drawn on their both ends. I can trim the tiny part of the base curve inside 
joints but because it does not affect the geometry I can leave it. 

 

Labelling 

While working in fabrication phase, it might be a great disaster to cut hundreds of small parts 
without any clue or address that how we are going to assemble them together, what is the order, 
and which one goes first. It is obvious that because all parts are different, we need to label them in 
order to assemble easily. 
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It could be simply a number or a combination of text and number to address pieces. If the object 
comprises of different main parts each divided into pieces, then we can name main parts, so we can 
use these names or initials with numbers to address the pieces (i.e. left_wing_01). We can use 
different hierarchies of project assembly logic in order to name parts as well (i.e. layer_01_p_45). 

Here I just need a series of numbers to show the position of ribs in the list. I can use <text tag> 
component in order to add text to my geometry and for that, I need text to display, position of the 
text, and height of the text. 

 

Fig.8.38. As you remember I had a series of planes which I used as target planes for orientating my 
section curves on the sheet. I am going to use same planes to make positions of the text. Since these 
planes are exactly at the corner of ribs I have to displace them first. 

 

Fig.8.39. I moved corner planes 1 unit in X direction and 0.5 unit in Y direction (as <sum> of the 
vectors) and I used these planes as positions of text tags. Here I used <text tag 3D> and I generated a 
series of numbers as much as ribs I have to use them as texts. The <integer> component that I used 
here converts 12.0 to 12 but you can do it with functions as well. As a result, you can see all parts 
have a unique number in their left corner. 
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Fig.8.40. Now you can change division factors of the cutting surface to compress ribs as much as 
possible to avoid wasting material. As you see in the above example, from the start point of the 
sheet_3, ribs started to be more flat and you have more space in between. Here you can split your 
ribs in two different cutting surface and change the division points of them, to compress them based 
on their shape. But if you are not dealing with lots of parts you can always do this type of stuff 
manually in Rhino; all parts do not need to be Associative! Now I have ribs in one direction, and I am 
going to do the same for the other direction of ribs as well. The only point that you should consider 
here is that the direction of joints flip around, so basically while I was working with the <orient>ed 
geometry in the previous part here I should work with the <offset> one. 

 

Fig.8.41. Nested ribs, ready to be cut. 

Cutting  

When all geometries become ready to cut, I need to Bake them and manage them a bit more on my 
sheets. As you see in Figure 8.41 they all nested in three sheets. I generated three different shapes 
for ribs in the width direction of the object to check them out. The file is now ready to be cut. 
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Fig.8.42. Sample of Ribs, ready to assemble. 

 

 

Assembly 

In our case assembly is quite simple. Sometimes you need to check your file again or even provide 
some help file in order to assemble your parts in different fabrication methods. All together, here is 
the surface that I made by paper sheet. 
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8.43. Final Model. 
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Fabrication is a wide topic to discuss. It highly depends on what you want to fabricate, what is the 
material, what is the machine and how fabricated parts going to be assemble and so on. As I told you 
before, depends on the project you are working on, you need to provide your data for fabrication 
stages. Sometimes it is more important to get the assembly logic, for example when you are working 
with simple components, but complex geometry as a result of assembly.  

 

 

 

 

Fig.8.44. Assembly logic; Material and joints are simple; I can work on the assembly logic and use the 
data to make my model. 
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Design Strategy 

 

Generative Algorithms are algorithmic and Parametric/Associative ways of dealing with geometry in 
design problems. More than conventional geometrical objects, with this algorithmic method, now 
we have all possibilities of computational geometries as well as managing huge amount of data, 
numbers and calculations. Here the argument is to not limit the design in any predefined 
experiment, and explore infinite potentials; there are always alternative ways to set up design 
algorithms. Although it seems that the in-built commands of these parametric modelling softwares 
could limit some actions or dictate methods, but alternative solutions can always be brought to the 
table, let our creativity fly away of limitations. 

In order to design something, having a Design Strategy always helps to set up the best possible 
algorithm to find the design solution. Thinking about general properties of design object, drawing 
some parts, even making some physical models, would help for a better understanding of the 
algorithm so better choice of <components> in digital modelling. Thinking about fix parameters, 
parameters that might change during the design, numerical data and geometrical objects needed, 
always help to improve the algorithm. It would be helpful to analytically understand the design 
problem, sketch it and then start an algorithm that can solve the problem. 

We should think in an algorithmic way to design algorithmic! 

 

 

 

 



Ch
ap

te
r_

9 

 

 

170  Design Strategy 

 

 

G
A

_V
er

.0
2 

 

 

Fig.9.1. Weaving project; From Analytical understanding to Associative modelling. 
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Fig.9.2. Porous wall project; From Analytical understanding to Associative modelling. 
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