

GENERATIVE ALGORITHMS
 using GRASSHOPPER

ZUBIN KHABAZI

 II

GENERATIVE ALGORITHMS
 using GRASSHOPPER

ZUBIN KHABAZI

© 2010 Zubin Mohamad Khabazi

This book produced and published digitally for public use. No part of this book may be reproduced in any manner
whatsoever without permission from the author, except in the context of reviews.

To see the latest updates visit my website or for enquiries contact me at:

www.MORPHOGENESISM.com

zubin.khabazi@googlemail.com

http://www.morphogenesism.com/�
mailto:zubin.khabazi@googlemail.com�

 III

Introduction

Have you ever played with LEGO Mindstorms NXT robotic set? Associative modelling is something
like that! While it seems that everything tends to be Algorithmic and Parametric why not
architecture?

During my Emergent Technologies and Design (EmTech) master course at the Architectural
Association (AA), I decided to share my experience in realm of Generative Algorithms and
Parametric-Associative Modelling with Grasshopper as I found it a powerful platform for design in
this way.

In this second edition, as I changed the name ‘Algorithmic Modelling’ to ‘Generative Algorithms’, I
tried to update some of the experiments and subjects due to the changes happening to the work-in-
progress project of Grasshopper. I hope this tutorial helps you to understand Generative Algorithms
and delicate Grasshopper as well. I would try to keep updating whenever needed but consider that
most of experiments and examples were established by previous versions of plug-in, so if you faced
some differences it might be because of that.

Although I still believe that the book needs editorial review, since this is a non-profit, non-
commercial product, please forgive me about that. I am very pleased that since publishing this book,
I have found great friends worldwide, so feel free to contact me for any queries and technical issues.

Enjoy and Good luck!

Acknowledgements

First of all I would like to thank Bob McNeel for his support in Grasshopper3D and David Rutten for
his inspiration and support as well. I also like to thank AA/EmTech directors and tutors Mike
Weinstock, Michael Hensel and also Achim Menges who established my parametric and
computational concepts. Many thanks to Stylianos Dritsas (AA/KPF) and Dr.Toni Kotnik (AA/ETH) for
their computation, scripting and advance geometry courses.

I am extremely grateful to the students, architects and designers who contacted me and shared their
knowledge and let me know short comes and errors of the work.

Zubin M Khabazi

March 2010

 IV

Contents

Chapter_1_Generative Algorithms ... 1

1_1_ Generative Algorithms ... 2

Chapter_2_The very Beginning ... 5

2_1_Method ... 6

2_2_Basics of Grasshopper ... 7

2_2_1_Interface, Workplace .. 7

2_2_2_Components .. 7

2_2_3_Data matching ... 15

2_2_4_Component’s Help (Context pop-up menu).. 17

2_2_5_Type-In Component Search / Add ... 18

Chapter_3_Data Sets and Math .. 19

3_1_Numerical Data Sets .. 20

3_2_On Points and Point Grids ... 22

3_3_Other Numerical Sets .. 24

3_4_Functions ... 25

3_5_Boolean Data types ... 29

3_6_Cull Lists .. 30

3_7_ Data Lists .. 33

3_8_On Planar Geometrical Patterns ... 37

Chapter_4_Transformations ... 48

4_1_Vectors and Planes .. 50

4_2_On Curves and Linear Geometries .. 51

4_3_Combined Experiment: Swiss Re ... 57

4_4_On Attractors .. 65

 V

Chapter_ 5_Parametric Space .. 75

5_1_One Dimensional (1D) Parametric Space .. 76

5_2_Two Dimensional (2D) Parametric Space .. 78

5_3_Transition between spaces ... 79

5_4_Basic Parametric Components .. 80

5_4_1_Curve Evaluation ... 80

5_4_2_Surface Evaluation .. 81

5_4_3_Curve and Surface Closest Point ... 83

5_5_On Object Proliferation in Parametric Space .. 83

5_6_On Data Trees ... 92

Chapter_6_ Deformations and Morphing .. 101

6_1_Deformations and Morphing .. 102

6_2_On Panelization ... 104

6_3_Micro Level Manipulations ... 107

6_4_On Responsive Modulation ... 111

Chapter 7_NURBS Surfaces and Meshes ... 117

7_1_Parametric NURBS Surfaces .. 118

7_2_Geometry and Topology ... 125

7_3_On Meshes .. 127

7_4_On Colour Analysis .. 135

7_5_Manipulating Mesh objects as a way of Design .. 138

Chapter_8_Fabrication ... 141

8_1_Datasheets .. 142

8_2_Laser Cutting and Cutting based Manufacturing .. 153

Chapter_9_Design Strategy ... 168

Bibliography .. 172

Chapter_1_Generative Algorithms

Ch
ap

te
r_

1

2 Generative Algorithms

G
A

_V
er

.0
2

1_1_ Generative Algorithms

If we look at architecture as an object, represented in space, we always deal with geometry
and a bit of math to understand and design this object. In the History of architecture,
different architectural styles have presented multiple types of geometry and logic of
articulation and each period has found a way to deal with its geometrical problems and
questions. Since computers have started to help architects, simulate space and geometrical
articulations, it became an integral tool in the design process. Computational Geometry
became an interesting subject to study and combination of programming algorithms with
geometry, yielded algorithmic geometries known as Generative Algorithms. Although 3D
softwares helped to simulate almost any space visualized, it is the Generative Algorithm
notion that brings the current possibilities of design, like ‘parametric design’ in the realm of
architecture.

Architects started to use free form curves and surfaces to design and investigate spaces
beyond the limitations of conventional geometries of the “Euclidian space”. It was
combination of Architecture and Digital that brought ‘Blobs’ on the table and pushed it
further. Although the progress of the computation is extremely fast, architecture has been
tried to keep track with this digital fast pace progress.

Contemporary architecture after the age of “Blob” seems to be more precise about these
subjects. Architectural design is being affected by potentials of algorithmic computational
geometries with multiple hierarchies and high level of complexity. Designing and modelling
free-form surfaces and curves as building elements which are associated with different
components and have multiple patterns is not an easy job to do with traditional methods.
This is the power of algorithms and scripts which are forward pushing the limits. It is obvious
that even to think about a complex geometry, we need appropriate tools, especially
softwares, which are capable of simulating these geometries and controlling their
properties. As a result, architects feel interested to use Swarms or Cellular Automata or
Genetic Algorithms to generate algorithmic designs and go beyond the current pallet of
available forms and spaces. The horizon is a full catalogue of complexity and multiplicity that
combines creativity and ambition together.

Ch
ap

te
r_

1

3 Generative Algorithms

G
A

_V
er

.0
2

Fig.1.1. Parametric Modelling for Evolutionary Computation and Genetic Algorithm, Zubin
Mohamad khabazi, Emergence Seminar, AA, conducted by Michael Weinstock, fall 2008.

A step even forward, now embedding the properties of material systems in design
algorithms seems to be more possible in this parametric notion. Looking at material effects
and their responses to the hosting environment in the design phase, now the inherent
potentials of the components and systems should be applied to the parametric models of
design. Not only these generative algorithms deal with form generation, but also there is a
great potential to embed the logic of material systems in them.

“The underlying logic of the parametric design can be instrumentalised here as an
alternative design method, one in which the geometric rigour of parametric modelling can
be deployed first to integrate manufacturing constraints, assembly logics and material
characteristics in the definition of simple components, and then to proliferate the
components into larger systems and assemblies. This approach employs the exploration of
parametric variables to understand the behaviour of such a system and then uses this
understanding to strategise the system’s response to environmental conditions and external
forces” (Hensel, Menges, 2008).

To work with complex objects, a design process usually starts from a very simple first level
and then other layers are added; complex forms are comprised of different hierarchies, each
associated with its own logic and details. These levels are also interconnected and their
members affect each other and in that sense this method called ‘Associative’.

Generally speaking, Associative Modelling relates to a method in which elements of design
being built gradually in multiple hierarchies and at each level, some parameters of these
elements being extracted to be the generator for other elements in the next level and this
goes on, step by step to produce the whole geometry. So basically the end point of one
curve could be the center point of another circle and any change in the curve would change
the circle accordingly. Basically this method of design deals with the huge amount of data
and calculations and happens through the flow of algorithms.

Ch
ap

te
r_

1

4 Generative Algorithms

G
A

_V
er

.0
2

The point is that all these geometries are easily adjustable after the process. Designer
always has access to the elements of design product from start point up to details. Actually,
since the design product is the result of an algorithm, inputs of the algorithm could be
changed and the result would also be updated accordingly. It is now possible to digitally
sketch a model and generate hundreds of variations of project by adjusting very basic
geometrical parameters. It is also viable to embed the properties of material systems,
fabrication constraints and assembly logics in parameters. It is also possible to respond to
the environment and be associative in larger sense. “… Parametric design enables the
recognition of patterns of geometric behaviour and related performative capacities and
tendencies of the system. In continued feedback with the external environment, these
behavioural tendencies can then inform the ontogenetic development of one specific system
through the parametric differentiation of its sub-locations” (Hensel, Menges, 2008).

Fig.1.2. A. form-finding in membranes and minimal surfaces, physical model, B. membrane’s
movement modelled with Grasshopper, Zubin Mohamad Khabazi, EmTech Core-Studio, AA,
Conducted by Michael Hensel and Achim Menges, fall 2008.

Grasshopper is a platform in Rhino to deal with these Generative Algorithms and Associative
modelling techniques. The following chapters are designed in order to combine geometrical
subjects with algorithms to address some design issues in architecture in an ‘Algorithmic’
method. The idea is to broaden subjects of geometry and use more commands and
examples are designed to do so.

Chapter_2_The very Beginning

Ch
ap

te
r_

2

6 The very Beginning

G
A

_V
er

.0
2

2_1_Method

This new edition of previously ‘Algorithmic Modelling’ and now ‘Generative Algorithms’ is
prepared due to my worldwide Grasshopper friends’ questions and correspondence and
also changes which were happened in Plug-in. Since Grasshopper is a work-in-progress
project and improves and changes rapidly, it seems necessary to upgrade the book in this
moment (and I am not totally sure by the time you receive it, another upgrade is needed or
not!). You should consider that most of the experiments have been done by previous
versions of the plug-in but I tried to update them wherever needed and I am sure that if you
faced any difference, you can find your way through.

The main concept of the book is to focus on some geometrical and architectural problems
and projects and to develop the understanding of Generative Algorithms, parametric
modelling, based on design experiments instead of describing pure math or geometry. To do
so, in most cases I assumed that you already know the basic understanding of ingredients of
discussions and I would not go through the definition of the ‘degree of a curve’ although I
will touch some, whenever necessary.

Grasshopper is fast growing and becoming a suitable platform for architects to design. More
than a tool or software, it presents a way of thinking for design issues, a ‘method’ called
Parametric or Associative these days. This method is developing by users all around the
world as a practical example of distributed intelligence. Since these developments of the
methods happen constantly and there are always upgrades to the software, and also
interesting discussions, I would recommend checking the Grasshopper web page
occasionally. By the way here in this chapter I would briefly discuss general issues of
workplace and basics of what we should know in advance.

http://www.grasshopper3d.com/

http://www.grasshopper3d.com/�

Ch
ap

te
r_

2

7 The very Beginning

G
A

_V
er

.0
2

2_2_Basics of Grasshopper

2_2_1_Interface, Workplace
Beside the other usual Windows menus, there are two important parts in the Grasshopper
interface: Component Panels and Canvas. Component Panels provide all elements we need
for our design and Canvas is the work place, where we put our Components and set up our
algorithms. You can click on any object from Panels and click again on Canvas to bring it to
work place or you can drag it on to the work place. Other parts of the interface are easy to
explore and you will be familiar with them through using them later on. More information
about this subject is also available at:

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryPluginInterfaceExplained.html

Fig.2.1. Grasshopper Component Tabs/Panels and Canvas

2_2_2_Components
There are different types of objects in Grasshopper panels or components menu which we
use to design stuff. You can find them under ten different tabs called: Params, Logic, Scalar,
Vector, Curve, Surface, Mesh, Intersect, XForm and Complex.

Canvas

Component Tabs and Panels

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryPluginInterfaceExplained.html�

Ch
ap

te
r_

2

8 The very Beginning

G
A

_V
er

.0
2

Each tab has multiple panels and different objects, and commands are sorted between
these panels. There are objects in these panels to draw geometries like lines and circles and
there are also lots of commands to move, rescale, divide, deform and ... these geometries.

So some objects draw stuff and generate data, some of them manipulate an already existing
geometry or data. Parameters are objects that represent data, like a point or line. You can
draw them by relevant Parameters or you can define them manually from drawn objects of
Rhino workplace. Components are objects that do actions like move, orientate, and
decompose. We usually need to provide relevant data for them to work.

As I told, each of them has an object in Panels which you can bring to canvas to use. In this
manual I used the term component

 <Point> component

If you right-click on a component, a menu will pop-up that contains some basic aspects of
the component. This menu called “Context pop-up menu”.

 to talk about any objects from the component panels to
make life easier! and I always used <> to address them clearly in the text, like <Point>.

 “Context pop-up menu”

Ch
ap

te
r_

2

9 The very Beginning

G
A

_V
er

.0
2

From now on, you need to find relevant components from panels and set up connections
between these components in order to generate your design algorithm and see the result in
Rhino workplace. If Scripting is a coded and abstract version of algorithms, here in
Grasshopper, the canvas represents a visual version of algorithms like Flowcharts which is
more sensible and flexible in designer’s hand.

Fig.2.2. Flowchart vs. Grasshopper Algorithm

Defining External Geometries

Most of the time we start our design projects by introducing drawn objects from Rhino
workplace to the Grasshopper canvas. It could be a point, a curve, a surface up to multiple
complex objects. It means we can use our manually created objects or even script generated
objects from Rhino in Grasshopper as external sources. Since any Geometry in Grasshopper
needs a component in canvas to work with, we have to define our external geometries in
canvas by relevant components. For this purpose we can look at the Params tab under
Geometry panel. There is a list of different types of geometries that you can use to define
your external object from Rhino workplace.

After bringing the proper geometry component to the canvas, define a Rhino object by
right-click on the component (context menu) and use “set one ... / set multiple … “ to assign
abject to the component. Here you need to select your geometry from Rhino workplace. By
introducing an object/multiple objects to a component it becomes Grasshopper object
which we can use it for any design purpose.

Ch
ap

te
r_

2

10 The very Beginning

G
A

_V
er

.0
2

Fig.2.3. Different geometry types in the Params > Geometry panel

Let’s have a simple example.

We have three points in Rhino viewport and we want to draw a triangle by these points in
Grasshopper. First we need to introduce these points in Grasshopper. We need three
<point> components from Params > Geometry > Point and for each we should go to their
context menu (right click) and select ‘set one point’ and then select the point from Rhino
viewport (Fig.2.4).

Fig.2.4. Set point from Rhino in Grasshopper component

Ch
ap

te
r_

2

11 The very Beginning

G
A

_V
er

.0
2

Fig.2.5. Grasshopper canvas and three points defined which turned to red crosses (x) in Rhino
workplace. I renamed components to point A/B/C by the first option of their context menu to
recognize them easier in canvas.

Components Connectivity

There are so many different actions that we can perform by components. Generally a
component takes some data from one/multiple source and gives the result back. We need
to connect the component which includes the input data to the processing component and
connect the result to the other components that need this result and so on.

Going back to the example, now if you go to the Curve tab of components, in the Primitive
panel you will see a <line> component. Drag it to the canvas. Then connect <point A> to the
‘A’ port of the <line> and <point B> to the ‘B’ port (to connect components, just click on the
semi-circle at the right side of <point> and drag it up to the other semi-circle on the target
(A/B input port of the <line>). You can see that Rhino draws a line between these points.

Ch
ap

te
r_

2

12 The very Beginning

G
A

_V
er

.0
2

Fig.2.6. Connecting <point> components to a <line> component by dragging from output of
the <point B> to the input of <line>.

Now add another <line> component for <point B> and <point C>. Do it again for <point C>
and <point A> with the third <line> component. Yes! There is a triangle in Rhino viewport.

Fig.2.7. <line> components draw lines between <point> components. As you see any
component could be used more than once as the source of information for other actions.

Fig.2.8. Now if you change the position of points manually in Rhino viewport, position of
points in Grasshopper (X ones) and resultant triangle will change accordingly but lines
between points (triangle) would remain.

Ch
ap

te
r_

2

13 The very Beginning

G
A

_V
er

.0
2

As you can see in this very first example, associative technique made it possible to
manipulate points and still have triangle between these points without further need to
adjust them. So the idea is to prepare objects (feeding algorithm/input), set up relations
between objects and add other manipulations to them (algorithm’s function) and generate
the design (algorithm output). We will do more by this concept to develop our
understandings about Algorithms.

There are some features on this subject that you can learn more at:

Input / Output

As mentioned before, any component in Grasshopper has input and output which means it
processes the given data and gives the processed data back. Inputs are in left part of
components and outputs at right. Data comes from any source attached to the input section
of the component and output of the component is the result of that specific function.

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryVolatileDataInheritance.html

You have to know that what sort of input you need for any specific function and what you
get after that. We will talk more about different sort of data we need to provide for each
component later on. Here I propose you to hold your mouse or “hover” your mouse over
any input/output port of components. A tool-tip will pop-up and you will see the name, sort
of data you need to provide for the component, is any predefined data there or not, and
even what is it for.

Fig.2.9. Pop-up tool-tip comes up if you hold your mouse over input/output port of the
component.

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryVolatileDataInheritance.html�

Ch
ap

te
r_

2

14 The very Beginning

G
A

_V
er

.0
2

Fig.2.10. Multiple connections for one component by holding shift key

Multiple connections

Sometimes you need to feed a component by more than one source of data. Imagine in the
above example you want to draw two lines from <point A> to <point B> and <point C>. You
can use two different <line> components or you can use one <line> component and attach
both point B and C as the second point of the <line> component. To do this, you need to
hold Shift key when you want to connect the second source of data to a component,
otherwise Grasshopper would substitute it. When you hold shift, the arrow of the mouse
appear in a green circle with a tiny (+) icon while normally it is gray. You can also use Ctrl
key to disconnect a component from another one (normally you can disconnect a
component from another one using context menu). In this case the circle around the mouse
appears in red with a tiny (-) icon.

Fig.2.11. Colour Coding.

Colour Coding

There is a colour coding system inside Grasshopper which shows components working
status.

Ch
ap

te
r_

2

15 The very Beginning

G
A

_V
er

.0
2

Any grey component means there is no problem and the data defined correctly/the
component works correctly. The orange shows warning and it means there is at least one
problem that should be solved but the component still works. The red component means
error and the component does not work in this situation. The source of error should be
found and solved in order to make component work properly. You can find the first help
about the source of error in component’s context menu (context menu > Runtime
warning/error) and then search the input data to find the reason of error. The green colour
means this component selected. The geometry which is associated with this component also
turns into green in Rhino viewport (otherwise all Grasshopper geometries are predefined to
red).

2_2_3_Data matching

Preview

All components that produce objects in Rhino have ‘Preview’ option in their menu. We can
use it to hide or unhide geometries in workplace. Any unchecked preview (Hidden output)
make the component name becomes hatched. We usually use preview option to hide
undesired geometries like base points and lines in complex models to avoid distraction. This
option in complex models helps to process data faster, so please hide your base geometries
when you do not need them to be seen.

For many Grasshopper components it is always possible to provide a list of data instead of
just one input. So in essence you can provide a list of points and feed a <line> component by
this list and draw more lines instead of one. It is possible to draw hundreds of objects just by
one component if we provide information needed.

Look at this example:

I have two different point sets, each with seven points. I used two <point> components and
I used ‘set multiple points’ to introduce all upper points in one component and all lower
ones in another component as well. As you see, by connecting these two sets of points to a
<line> component, seven lines being generated between them. So we can generate more
than one object with each component (Fig.2.12)

Ch
ap

te
r_

2

16 The very Beginning

G
A

_V
er

.0
2

Fig.2.12. Multiple point sets and generating lines by them.

But what would happen if the number of points was not the same in two point (data) sets?

In the example below I have 7 points in top row and 10 points in the bottom. Here we need
a concept in data management in Grasshopper called ‘Data matching’. If you have a look at
the context menu of the component you see there are three options called:

Shortest list

Longest list

Cross reference

Look at the difference in Figure 2.13.

It is clear that the shortest list uses the shortest data set to make lines, and the longest list
uses the longest data set while uses an item of the shorter list more than once. The cross
reference option connects any possible two points from lists together. It is very memory
consuming option and sometimes it takes a while for the scene to upgrade changes.

Since the figures are clear, I am not going to describe more. For more information go to the
following link:

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryDataStreamMatchingAlgorithms.html

http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryDataStreamMatchingAlgorithms.html�

Ch
ap

te
r_

2

17 The very Beginning

G
A

_V
er

.0
2

Fig.2.13. Data matching A: shortest list, B: longest list and C: cross reference

2_2_4_Component’s Help (Context pop-up menu)
As it is not useful to introduce all components and you will better find them and learn how
to use them gradually in experiments, I recommend you to play around, pick some
components, go to the components context menu (right-click) and read their Help which is
always useful to see how this component works and what sort of data it needs and what
sort of output it provides. There are other useful features in this context menu that we will
discuss about them later.

Ch
ap

te
r_

2

18 The very Beginning

G
A

_V
er

.0
2

Fig.2.14. Context pop-up menu and Help part of the component

2_2_5_Type-In Component Search / Add
If you know the name of component you want to use, or if you want to search it faster than
shuffling components’ tabs and panels, you can double-click on the canvas and type-in the
name of the component to bring it to the canvas. For those who used to work with
keyboard entries, this would be a good trick!

Fig.2.15. Searching for <line> component in the component-pop-up menu by double clicking
on the canvas and typing the name of it. The component will be brought to the canvas.

Chapter_3_Data Sets and Math

Ch
ap

te
r_

3

20 Data Sets and Math

G
A

_V
er

.0
2

Chapter_3_Data Sets and Math

Although in 3D softwares we can select our geometries from menus and draw them explicitly by
clicking without thinking of the mathematical aspects behind, in order to work with Generative
Algorithms, as the name sounds, we need to think a bit about data and math to make inputs of
algorithm and generate multiple objects. Since we do not want to draw everything manually, we
need some sources of data as the basic ingredients to make this generation possible and feed the
algorithm to work more than once and result in more than one object.

The way in which algorithm works, the Workflow, is simple. It includes input of data, processing the
data and output. This process happens in the whole algorithm or if we look closer, at each part of it.
So instead of conventional method of drawing every object, we provide information, this
information will process by the algorithm and the resultant geometry will be generated. As I said, for
example, instead of copying an object by clicking 100 times in screen, we can tell the algorithm, copy
an item for ‘100 times’ in ‘X positive direction’ with the space of ‘3’ between them. To do that you
need to define the ‘100’ as number of copying, and ‘X Positive’ direction and ‘3’ as the space in
between and the algorithm performs the job for you automatically.

All we are doing in geometry has a little bit of math behind. We can use these simple math functions
in our algorithms with numbers and objects, to generate infinite geometrical combinations. It starts
with numbers and numerical sets of data.

Let’s have a look; it is easier than what it sounds!

3_1_Numerical Data Sets

All math and algorithms start with numbers. Numbers are hidden codes of the universe. To begin,
first of all we should have a quick look at numerical components to see how we can generate
different numerical data sets in Grasshopper and then the way we can use them to design stuff.

The most useful number generator is <Number slider> component (Params > Special > Number
slider) that generates one number which is adjustable manually. It could be integer, real, odd, even
and with limited lower and upper values. You can set them all by ‘Edit’ part of the context menu.

For setting one fixed numeric value you can go to the Params > Primitive > Integer / Number to set
one integer/real value through context menu of <Int>/<Num>.

One numerical value

Ch
ap

te
r_

3

21 Data Sets and Math

G
A

_V
er

.0
2

We can produce a list of discrete numbers by <series> component (Logic > Sets > Series). This
component produces a list of numbers which we can adjust the first number, step size of the
numbers, and the number of values.

0, 1, 2, 3, … , 100

0, 2, 4, 6, … , 100

10, 20, 30, 40, … , 1000000

Series of numbers

We can divide a numerical range between a low and high value by evenly spaced numbers and
produce a range of numbers. We need to define an interval to set the lower and upper limit and also
the number of steps between them (Logic > Sets > Range).

Any numeric interval (i.e. from 1 to 10) could be divided into infinite parts:

1, 2, 3, … , 10

1, 2.5, 5, … , 10

1, 5, 10

Range of numbers

Ch
ap

te
r_

3

22 Data Sets and Math

G
A

_V
er

.0
2

Domains (‘Intervals’ in previous versions) provide a range of all real numbers between a lower and
upper limit. There are one dimensional and two dimensional domains that I will talk about them
later. We can define a fixed domain by using Params > Primitive > Domain/Domain2 component or
we can go to the Scalar > Domain which provides a set of components to work with them in more
flexible ways.

Domains by themselves do not provide numbers. They are just extremes, with upper and lower
limits. As you know there are infinite real numbers between any two real numbers. We use different
functions to divide them and use division factors as the numerical values.

To see the difference and usage lets go for some examples.

Domains (Intervals)

3_2_On Points and Point Grids

Points are among the basic elements for geometries and Generative Algorithms. As points mark a
specific position in the space they can be start points of curves, centre of circles, origin of planes and
so many other roles. In Grasshopper we can generate points in several ways:

- We can simply pick a point/bunch of points from the scene and introduce them to our workplace
by <point> component (Params > Geometry > point) and use them for any purpose (These points
could be adjusted and moved manually later on in Rhino scene and affect the whole project.
Examples on chapter_2).

- We can introduce points by <point xyz> component (vector > point > point xyz) and feed the
coordinates of the points by numbers. Or we can feed it by different datasets, based on our needs.

- We can make point grids by <grid hexagonal> and <grid rectangular> components.

- We can extract points from other geometries in many different ways like endpoints, midpoints, etc.

Ch
ap

te
r_

3

23 Data Sets and Math

G
A

_V
er

.0
2

- Sometimes we can use planes (origins) and vectors (tips) as points to start other geometries and
vice versa.

You have seen the very first example of making points in chapter_2 but let’s have a look at how we
can produce points and point sets by <series>, <range> and <number slider> components and other
numerical data providers.

Fig.3.1. feeding a <point xyz> or <pt> component by three <number slider> to generate a point by
manually feeding the X,Y and Z coordinates.

Fig.3.2. Generating a grid of points by <series> and <pt> components while the first <number slider>
controls the distance between points (step size) and the second one controls the number of points in
grid by controlling the number of values in <series> component (The data match of the <pt> set into
cross reference to make a grid of points but you can try all data matching options).

Fig.3.3. Dividing a numerical range from 0 to 1 by a manually controllable number (5) and feeding a
<pt> component with ‘Longest list’ data match by these numbers. Here we divided the range by 5 so
we have 6 points and all points drawn between the origin point(0,0) and point(1, 1) on the Rhino
workplace (you can change the lower and upper limit of the <range> to change the coordinates of
the points. To do so you need to right-click on the D part of the component (domain) and change the
domain. There are other ways to work with intervals and change them which we will discuss later).

Since our first experiments sound easy, let’s go further, but you can have your own investigations of
these components and provide different point grids with different positions and distances.

Ch
ap

te
r_

3

24 Data Sets and Math

G
A

_V
er

.0
2

3_3_Other Numerical Sets

Fig.3.4. Generating a random point set. The <random> component produces 10 random numbers
which is controlled by <number slider> and then this list is shuffled by <jitter> component (Logic >
Sets > Jitter) for Y coordinates of the points once, and again for Z coordinates, otherwise you could
see some sort of pattern inside your grid (attach the <random> to X, Y and Z of the <pt> without
<jitter> and check it!). The data match set to longest list.

In figure 3.4 all points are distributed in the space between 0 and 1 of the coordinate system for
each direction. To change the distribution area of the points we should change the numerical
domain in which <random> component produces numbers. This is possible by manually setting the
“domain of random numeric range” on Rhino command line if you right-click on (R) port (random
numbers domain) of component or by defining the domain intervals adjustable by sliders. (Fig.3.5)

Random Data Sets

I am thinking of making a randomly distributed set of points for further design issues. All I need is a
set of random numbers instead of <series> to feed <pt> component. So I pick a <random>
component from Logic > sets. A <random> component provides a list of random numbers and we
can control the number of values and domain of them. But the <random> component produces one
set of random numbers and I don’t want to have same numbers for all X,Y and Z coordinates. To
avoid same values, I need different random numbers for each. I need to provide three lists of
random numbers either by three <random> components with different seeds (by feeding <random>
component’s (S) port with different numbers, to generate different random values otherwise all
<random> components would generate same values) or to shuffle the current list of numbers.

Fig.3.5. Setting up a domain by an <interval> component (Note: from now on please use Scalar >
Domain > Domain in new version of Grasshopper instead of <interval>) to change the distribution
area of points (look at the density of scene’s grid in comparison with Fig.3.4).

Ch
ap

te
r_

3

25 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.6. Using <Fibonacci> series to produce increasing distances (non-evenly spaced series of
numbers) to generate points. The number of points could be controlled with a <number slider>.

Fibonacci series

What about making a point grid with non-evenly spaced, and increasing values? Let’s have a look at
available components. We need series of numbers which grow rapidly and under Logic tab and Sets
panel we can see a <Fibonacci> component.

A Fibonacci is a series of numbers with two first defined numbers (0 and 1) and the next number is
the sum of two previous numbers.

N(0)=0, N(1)=1, N(2)=1, N(3)=2, N(4)=3, N(5)=5, … , N(i)=N(i-2)+N(i-1)

Here are some of the numbers of the series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

As you see numbers grow rapidly.

Here I used <Fibonacci> series (Logic > Sets > Fibonacci) to produce incremental numbers to feed a
<pt> component with them.

3_4_Functions

Predefined components in Grasshopper might not be always your best way of designing stuff. You
might need to generate your own data sets or at least manipulate the data of existing components.
To do so, you need to use math functions and change the power, distance, … of numbers. Functions
are components which are capable of performing math functions in Grasshopper. There are
functions with different variables (Logic > script). You need to feed a function with relevant data
(not always numeric but also Boolean, String) and it performs a user defined function on the input
data. To define the function you can right-click on the (F) part of the component and type it or go to
the Expression Editor. Expression Editor has so many predefined functions and a library of math
functions for help.

Pay attention to the name of variables you use in your expression and the associated data you match
to the function component!

Ch
ap

te
r_

3

26 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.7. Parametric circle by mathematical functions. You have <Sin> and <Cos> functions in the
Scalar > Trig. (F(x) = x * 2Pi).

Math functions

As mentioned before, using a predefined component is not always what we aimed for, but in order
to get the desired result we can use mathematical functions to change the data sets and feed them
to generate geometries.

A simple example is the mathematical function of a circle that is X=Sin(t) and Y=Cos(t) while (t) is a
range of numbers from 0 to 2Pi. I produce it by a <range> of numbers which starts from 0 to 1 with N
numbers in between, times 2Pi by <function> component. This would result a range of numbers
from 0 to 2pi that makes a complete circle in radian.

Fig.3.8. More experiments. Series of points which are defined by <Fibonacci> series and simple
mathematical functions (x: F(x)=x/100, y: F(x)=x/10). The selected green F(x) is a function to add 2 to
the value of <number slider> (F(x)=x+2) in order to make the values of <series> equal to the Fibonacci
numbers (Fibonacci has two extra first values). The aim is to show you that we can simply manipulate
these data sets and generate different geometries accordingly.

Ch
ap

te
r_

3

27 Data Sets and Math

G
A

_V
er

.0
2

 Fig.3.9. A <range> of numbers from 0 to 2 which times by 2Pi with <Function> that makes it a
numerical range from 0 to 4Pi. This range divided into 60 parts. The result feeds the <pt> component
by the following math function:

X=t * Sin(t), Y=t * Cos(t)

You know <sin> and <cos> components. To apply t*sin/cos I used <multiplication> component from
Scalar>Operators. There you could find components for simple math operations as well.

Fig.3.10. A complex one! Inter tangent spirals from two inverted spiral point sets. <range> interval is
from 0 to 4 which is divided into 400 points and then multiplied by functions:

First <pt>: X: F(x) = x * Sin(x*2 Pi), Y: F(x) = x * Cos(x * 2 Pi)

Second <pt> has the same functions but inverted.

Ch
ap

te
r_

3

28 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.11. Moebius by point sets. <u> and <v> are <range> components which renamed. The numeric
domain of each one presented in the scene. The math function to generate Moebius is:

X= Sin(u)*(-2+v*sin(u/2))

Y= Cos(u)*(-2+v*sin(u/2))

Z= v*Cos(u/2)

(While u=0 to 8Pi and v=-2 to 2 which created by function components and all feed <pt> component.)

Playing around math functions could be endless. You can find so many mathematical resources to
match your data sets with them. The important point is that you can manipulate the original data
sets and generate different numerical values and feed other components by them.

So as you see by simple sets of numerical data we can start to generate geometries and this is how
algorithms work. From now on, we need to build up our knowledge based on various geometrical
concepts in algorithmic method to deal with problems and design issues, like this very beautiful,
Enneper surface, (by Rhino’s Math function plug-in):

Ch
ap

te
r_

3

29 Data Sets and Math

G
A

_V
er

.0
2

3_5_Boolean Data types

Data is not limited to Numbers. There are other data types which are useful for different purposes in
programming and algorithms. Since we are dealing with algorithms, we should know that the
progress of an algorithm is not always linear. Sometimes we want to decide whether to do
something or not. Programmers call it conditional statements. We want to see if a statement meets
certain criteria or not. The response of a conditional ‘question’ is a simple yes or no. in algorithms
we use Boolean data to represent these responses. Boolean data types represent only True (yes) or
False (no) values. If the statement meets the criteria, the response is True, otherwise False. As you
will see later, this data type is very useful in different cases when you want to decide about
something, select some objects by certain criteria, sort objects, etc.

Fig.3.12. Here I generated ten <random> values and by a <Larger> component (Scalar>Operators) I
want to see if these numbers are less than a certain <Upper_limit> (any value by a <number slider>)
or not. As you see whenever numbers meet the criteria (means it is smaller than the <Upper_limit>),
the <Larger> passes ‘True’ as a result, otherwise ‘False’. Here I used <Panel> components form
Params > Special to show the contents of the <Random> and the result of the <Larger> component.

Fig.3.13. For the next step, I generated 30 values with a <series> component and I used a <Modulus>
component (Scalar > Operators > Modulus) to find the remainder of the division of the numeric
values by <3> and I passed the result to an <Equals> to see if these remainders = 0 or not. As you see
the result is another <panel> of True/False values.

Ch
ap

te
r_

3

30 Data Sets and Math

G
A

_V
er

.0
2

So as you can see in these examples, there are different possibilities to check criteria by numeric
values and get Boolean values as result. But sometimes, we want to see if the situation meets
different criteria, and we want to decide based on the result of them. For example based on the
above experiments, we want to see whether a value is smaller than a certain upper_limit and at the
same time it is dividable by 3. To know the result, we need to operate on the result of both functions
which means we need to operate on Boolean values. If you check, under the Logic tab and in
Boolean panel there are various components that work with Boolean data type.

Fig.3.14. Here I combined both concepts. I used a <Gate And> component (Logic > Boolean > Gate
And) and I attached both <function>s to perform Boolean conjunction on them. The result is True
when both input Boolean values are True, otherwise it would be False. As you see, those numerical
values which are smaller than the <Upper_limit> and dividable by 3 are meeting the criteria and pass
True at the end.

There are multiple Boolean operators on Boolean panel of the Logic tab that you can use and
combine many of them to create your criteria, make decisions and build up your design based on
these decisions. We will discuss how to use these Boolean values later.

3_6_Cull Lists

There are many reasons that we might want to select some of the items from a given data set and
do not apply a function to all of them. To do this, we either need to select some of the specific items
from a list or omit other items. There are different ways to achieve this but let’s start with omitting
or culling lists of data.

Up to now there are three <cull> components to cull a list of data in Grasshopper. While <cull Nth>
omit every N item of a given list of data, <cull pattern> takes a pattern of Boolean values

Ch
ap

te
r_

3

31 Data Sets and Math

G
A

_V
er

.0
2

(True/False) and cull a list of data, based on this pattern, means any item of the list that associates
with True value in Boolean list passes and those that associate with False, omit from the list. <Cull
index> culls a list of data by index numbers.

If the number of values in the data list and Boolean list are the same, each item of the data list being
evaluated by the same item in the Boolean list. But you can define a simple pattern of Boolean
values (like False/False/True/True which is predefined in the component) and <cull> component
would repeat the same pattern for all items of the data list.

For better understanding, here I want to introduce some of the ways we can select our desired
geometries (in this case points) out of a predefined data set.

Fig.3.15. Selection of points from a point set by their distance to a reference point, using <Cull
pattern> component.

Distance example

I am thinking of selecting some points from a point set based on their distance to another point
(reference point). Both point set and the reference point are defined by <point> component. First of
all what I need is a <distance> component (Vector > Point > Distance) that measures the distance
between points and the reference and as a result it provides a list of numbers (distances). I
compared these distances by a user defined number (<number slider>) with a <F2> component
(Logic > Script > F2 / function with two variable). This comparison generates Boolean values as
output (True/False) to show whether the value is smaller (True) or bigger (False) than the upper limit
F=x>y (this is the same as <Larger> component). I am going to use these Boolean values to feed the
<Cull pattern> component.

As mentioned before, <Cull pattern> component takes a list of generic data and a list of Boolean
data and omits those members of the generic list of data who associate with ‘False’ value of the
Boolean list. So in this case the output of the <Call pattern> component is a set of points that
associate with True values which means they are closer than the specified number shown on the
<number slider>, to the reference point, because the X>Y function always pass True for the smaller
values of Y which means smaller distances (y=Distance). To show them better I just connected them
to the reference point by a simple <line>.

Ch
ap

te
r_

3

32 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.16. Topography with points associated with contour lines.

What I have is a point set which is defined by a <point> component (named topography). I need the
height of the points and with the same logic as distance example, I can select my desired points.
Here I used a <Decompose> component (Vector > Point > Decompose) to get the Z coordinates
(heights) of these points. Point <Decompose> gives me the X,Y and Z coordinates of each point of its
input. I compared these values with a given number (<number slider>) with a <Larger> component
to produce a list of associative Boolean values. The <Cull pattern> component passes points who
associated with the True values which means selected points are higher than the user defined height
value.

Topography example

Having tested the first distance logic, I am thinking of selecting some points which are associated
with contour lines on a topography model, based on their height.

Fig.3.17. Selected points are higher than 4.7550 unit! (A user defined value). These points are now
ready to plant your Pine trees!

Ch
ap

te
r_

3

33 Data Sets and Math

G
A

_V
er

.0
2

3_7_ Data Lists

It is almost clear for you now that one of the basics of the algorithmic modelling is data lists. Data
lists might be any sort of data like numbers, points, geometries and so on. Looking at the Logic tab,
under the List panel there are multiple components that manipulate data lists. We can extract one
item from a data list by its index number, we can extract part of a list by the lower and upper index
numbers and so on. These list management items help us to gain a desired data list for our design
purposes. Look at some examples:

Fig.3.18. Here there is a list of points. I want to select the point with lowest X coordinate. As I said
before, a <point decompose> component gives us the coordinates of points. What I need to do is to
find the minimum X value of all X values of points. To achieve that I need to sort all these X
coordinates to find the minimum. This is what <Sort List> will do for me. Basically <sort> component,
sorts a list (or multiple lists) of data based on a numeric data list as sortable keys, so when it sorts
numbers of key, the associated data will sort as well. So here I sorted all points with their X
coordinates as Key data. What I need is to select the first item of this list. To do this, I need an <Item>
component which extracts an item form a list by its index number. Since the first item (index 0) has
the minimum X value, I extracted index 0 from the list and the output of the component would be the
point with the minimum X value in the point set.

Lets go for more examples:

Ch
ap

te
r_

3

34 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.19. Generating triangles by a network of points.

The first step is to create a grid of points by <series> and <pt> components. The next step is to find
the proper points to draw lines in between. Each time we need a line starts from a point and ends at
the next point on the same row but next column, then another line goes from there, to the back
column but at the next row and final line goes back from there to the start point. To do this, it seems
better to make three different lists of points, one for all ‘first points’, one for all ‘second points’ and
another for all ‘third points’ and then draw lines between them.

I can use the original points as the list for all ‘start pints’. The first, ‘second point’ is the second point
in the point set and then the list goes on, one by one. So to select the ‘second points’ I just shifted
the original list by <Shift list> component (Logic > List > Shift list) by shift offset=1 which means the
second item of the list (index 1) becomes the first item (index 0) and the rest of the list would be the
same. This new list is the list of ‘Second points’.

‘Third points’ of triangles are in the same column as the ‘first points, but in next row. In terms of
index numbers, if the grid has N columns, the first point in the second row has the index =

Triangles

Let’s develop our experiments with data management. Imagine we have a network of points and we
want to draw lines to make triangles with a pattern like figure 3.19. This concept is useful in mesh
generation, panelization and relevant issues but for this time it is important to be able to generate
this basic concept.

index of
the first point (0) + N

In a grid with 6 columns, the index of the first point of the second row is 6. So here I shifted the
original list of points again by shift offset = the number of columns, to get the first point of the next
row (the shift offset comes from the <number slider> which is the number of columns) to find all
third points.

Ch
ap

te
r_

3

35 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.20. Selected item is the shifted points by the shift offset value equal to the number of columns
which produces all ‘third points’ of triangles.

To complete the task I need to manipulate these lists a bit more so concentrate again:

1. First of all, in the list of ‘First points’, points in the last column never could be first points of
triangles, so I need to omit them from the list of ‘First points’.

2. Points on the first column also, never could be ‘second points’, so I need to omit them from the
list of ‘second points’.

3. The same for ‘third points’, where points in the last column never could be third point as well.

If you combine all these three parts and imagine and draw them you realize that in all three lists,
points in the last column could not be used.

So basically I need to omit last column from each list of data. That’s why I attached all points’ lists,
each to one <Cull Nth> component. <Cull Nth> omits every N number of a data list and N is cull
frequency (Fig 3.20). In this case all data lists culled by the number of columns. That’s because if for
example we have 6 columns, it omits every 6th item of the list, means the item in the last column.
And the result is a new list with omitted last column.

So I just connected the <number slider> which defines the number of columns to each <Cull Nth>
component as frequency.

Fig.3.21. Using <Cull Nth> to omit the last column of the first, second and third point lists.

Ch
ap

te
r_

3

36 Data Sets and Math

G
A

_V
er

.0
2

The last step is to feed three <line> components to connect first points to the second, then second
points to the third and finally third points to the first again.

Fig.3.22. Making lines by connecting culled lists of points to the <Line> component. Don’t forget that
data matching for the <Pt> component set to Cross Reference and for <Line> components set to
Longest List.

Fig.3.23. Now by changing the <number slider> you can have different grids of points which produce
these triangles accordingly.

Ch
ap

te
r_

3

37 Data Sets and Math

G
A

_V
er

.0
2

Although there are still some problems with our design and we know that we should not start any
triangle from the points of the last row (and we should omit them from the list of ‘first points’), but
the concept is clear…… so let’s go further. We will come back to this idea while talking about mesh
geometries and then I will try to refine it. The main idea is to see how data should be generated and
managed. Let’s develop our understanding through more experiments.

3_8_On Planar Geometrical Patterns

Geometrical Patterns are among the possible design issues with Generative Algorithms and in
Grasshopper. We have the potential to design a motif and then proliferate it as a pattern which
could be used as a base of other design products. In case of designing patterns we should have a
conceptual look at our design/model and extract the logic that produces the whole shape while
being repeated. So by drawing the basic geometry we can copy it to produce the pattern as large as
we need (Fig.3.22).

Fig.3.24. Extracting the concept of a pattern by simple geometries.

Ch
ap

te
r_

3

38 Data Sets and Math

G
A

_V
er

.0
2

I still insist on working on this subject by data sets and simple mathematical functions instead of
other useful components just to see how these simple operations and numerical data sets have the
great potential to generate shapes, even classic geometries.

Fig.3.25. Complex geometries of Iran’s Sheikh Lotfollah Mosque’s tile work comprises of simple
patterns which created by mathematical-geometrical calculations.

Fig.3.26. Basic concepts to generate patterns.

Simple Linear Pattern

Here I decided to design a pattern with some basic points and lines and my aim is to use simple
concepts like Figure 3.26.

First of all I want to generate some basic points as base geometries and then draw my lines between
them. I started my definition by a <series> which makes it possible to control the number of values
(here number of points) and the step size (here distance between points). By this <series> I
generated a set of points with only X entries (Y and Z =0).

Ch
ap

te
r_

3

39 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.27. Here I generated my first set of points with <series> and <pt> components. The new trick is
a <Receiver> component from Params > Special > Receiver. This component takes data from one
component and passes it to another one while removes wires from the canvas. So in complex
projects, when we want to use one source of data for many other components, it helps us to clear the
canvas and don’t be distracted by so many long wires. Here as you see in the second picture, the
<Receiver> component, receives its data from <series>.

Fig.3.28. To create a “zig-zag” form of connections I need two rows of points as base geometries. I
used another <Receiver> to get data from <series> and with another <pt> I generated the second
row of points here with Y values come from a <number slider>.

Fig.3.29. In the next step, I have to omit some points from each list to provide basic points for zig-zag
pattern. Here I omit those points with <cull pattern>, one with True/False and another one with
False/True Boolean pattern.

Ch
ap

te
r_

3

40 Data Sets and Math

G
A

_V
er

.0
2

Fig 3.30. Now if you connect both <Cull> components to a <Poly line> component from Curve > Spline
which draws lines by multiple vertices instead of two points, you see that a Z shape line would be the
result. This is because points are not sorted and they need to be sorted in a list like this: 1st_pt of 1st
row, 1st _pt of 2nd row, 2nd_pt of 1st row, 2nd_pt of 2nd row, …

Fig.3.31. The component that sorts points in a way which I described is <Weave> (Logic > List). It
takes data from multiple resources and sorts them based on a pattern which should be defined in its
P input (like always read the component’s help to see detailed information). The result is a list of
sorted data and when you connect it to a <Pline> you see that the first zig-zag line is generated.

Fig.3.32. With the same concept, I generated the third row of points, and with another <weave> and
<Pline> components, I drew second zig-zag line of the pattern.

Ch
ap

te
r_

3

41 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.33. Although there are shorter ways to generate these lines, here again I used the same concept
for points and pline of the third row. I unchecked the Preview option of <Pt>, <Cull> and <Weave>
components (in their context menu) to hide all points and see Plines alone.

Fig.3.34. If you copy all process again and in this time convert Y values of <pt> components to
negative (using same <number slider>s with a function of f(x) = -x), you would have a mirrored set of
Plines. Now manipulating distances, you could have patterns in different shapes and scales.

Fig.3.35. you could change the way you generate your base points or cull your lists of data. The result
could be different patterns of intersecting lines which is simple, but could be the generative geometry
to produce complex models.

Ch
ap

te
r_

3

42 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.36. This is the first result of the design. The motif is repeated simply and the result could be used
in any desired way which depends on your purpose.

Fig.3.37. And this is just one of the examples among the hundreds of possibilities to use these basic
patterns to develop a design. Later on you have the potential to differentiate the basic pattern and
get manipulated design outcomes.

Ch
ap

te
r_

3

43 Data Sets and Math

G
A

_V
er

.0
2

Circular patterns

Fig.3.38. Circular geometrical patterns.

The start point of this pattern is a data set which produces a bunch of points along a circle, like the
example we did before. This data set could be rescaled from the centre to provide more and more
circles around the same centre. I will cull these sets of points with the same way as the last example.
Then I will generate a repetitive ‘zig-zag’ pattern out of these rescaled-circular points to connect
them to each other, make a star shape curve. Overlapping of these stars could make one part of the
motif.

There are endless possibilities to create motives and patterns in this associative modelling method.
Figure 3.38 shows another motif which is drawn based on circular geometry rather than linear one.
Since there are multiple curves which all have the same logic, I will describe one part of the
algorithm and keep the rest for you.

Fig.3.39. Providing a range of 0 to 2Pi and by using Sin/Cos functions, making the first set of points in
a circular geometry. I used a function with two variables to multiply the result of Sin/Cos by another
<number slider> to change the radius of the circle.

Ch
ap

te
r_

3

44 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.40. Increasing the result of Sin/Cos functions while multiplying by a <number slider>, making
the second set of points with bigger radius. As you see the result of this section is two point sets. I
renamed <pt> components.

Fig.3.41. First and second circles of points.

In order to cull points, we can simply use the <Cull pattern> for the points and use True/False like
the last example. But how we can sort the list of points after all? It is possible again to use <weave>
component. But here I want to use another concept of sorting which I think would be useful later. I
want to sort points based on their index number in the set.

First of all I need to generate index numbers. Because I produced points by a <range> component
with real numbers, here I need a <series> component to provide integers as indices of the points in
the list. The N parameter of the <range> defines the number of steps or divisions, so the <range>
component produces N+1 numbers. That’s why I need a <series> with N+1 values to be the index of
the points.

Ch
ap

te
r_

3

45 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.42. Generating index number of the points (a list of integers starts from 0)

Fig.3.43. Now I need to cull points and indices both the same as previous example. Then I used
<Merge> component (Logic > Tree) to generate one list of data from both <cull> lists. I did it for both
points and indices. Although the result of the merging for <series> would be again numbers of the
whole data set, the order of them is not the same and would be similar to the points. Now by sorting
the indices as sortable keys we can sort the associated points as well.

Ch
ap

te
r_

3

46 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.44. Points are sorted with a <sort> component while the sortable key is their indices. A Poly line
is drawn by sorted points.

Fig.3.45. Indecies before and after sorting, and associated-sorted points which generated a star-
shape poly line.

The same logic could be used to create more complex geometries by simply generating other point
sets, culling them and connecting them together to produce desired patterns finally. The trick is to
choose the best group of points and the way you connect them to other sets.

Ch
ap

te
r_

3

47 Data Sets and Math

G
A

_V
er

.0
2

Fig.3.46. You can think about other possibilities of the patterns and linear geometries and their
applications like projecting them to other geometries.

Although I insisted to generate all previous models by data sets and simple mathematical functions,
we will see other simple components that make it possible to decrease the whole process or change
the way we need to provide data. We will discuss them together.

Fig.3.47. Final model.

Chapter_4_Transformations

Ch
ap

te
r_

4

49 Transformations

G
A

_V
er

.0
2

Chapter_4_Transformations

Transformations are essential operations in modelling and generating geometries. They enable us to
get variations from the initial simple objects. Transformations help us to re-scale and orientate our
objects, move, copy, mirror them, or may result in accumulation of objects. There are different types
of transformations but to classify them, we can divide them to main branches, and the first division
is linear and spatial transformations. Linear transformation performs on 2D space while spatial
transformation deals with the 3D space and all possible object positioning.

In other sense we can classify transformations by status of the initial object; transformations like
translation, rotation, and reflection keep the original shape but scale and shear change the original
state of the object. There are also non-linear transformations. In addition to translation, rotation and
reflection we have different types of shear and non-uniform scale transformations in 3D space, also
spiral and helical transformations and projections which make more variations in 3D space.

In order to transform objects, conceptually we need to move and orientate objects (or part of
objects like vertices or cage corners) in the space and to do this, we need to use vectors and planes
as basics of these mathematical/geometrical operations. We are not going to discuss basics of
geometry and their mathematical logic here, but first let’s have a look at vectors and planes because
we need them to work with.

Fig.4.1. Transformation is a great potential to generate complex forms from individuals. Nature has
some great examples of transformation in its creatures.

Ch
ap

te
r_

4

50 Transformations

G
A

_V
er

.0
2

4_1_Vectors and Planes

Vector is a mathematical/geometrical object that has magnitude (or length) and direction and sense.
It starts from a point, goes towards another point with certain length and specific direction. Vectors
have wide usage in different fields of science and in geometry and transformations as well.

Fig.4.2. A: Basic elements of a Vector, B: point displacement with a vector.

Simply if we have a point and a vector, this vector can displace the point with the distance of
vector’s magnitude and towards its direction to create a new position for it. We use this simple
concept to generate, move, scale and orientate geometries in our associative method.

Planes are another useful set of geometries that we can describe them as infinite flat surfaces which
has an origin point. Construction planes in Rhino are these types of planes. We can use these planes
to put our geometries on them and do some transformations based on their orientation and origin.
For example in 3D space, we cannot orientate an abject on a vector! and we need two vectors to
create a plane to be able to put geometry on it.

Vectors have direction and magnitude while planes have orientation and origin. So they are two
different types of constructs that can help us to create, modify, transform and articulate our models
in space.

Grasshopper has some of the basic vectors and planes as predefined components. These are
including X, Y and Z unit vectors and XY, XZ, and YZ planes. There are couple of other components to
produce and modify them which we will talk about them in our experiments. So let’s jump into
design experiments and start with some of the simple usage of vectors and go step by step forward.

Ch
ap

te
r_

4

51 Transformations

G
A

_V
er

.0
2

4_2_On Curves and Linear Geometries

As we have experimented with points which are 0-Dimension geometries, now we can start to think
about curves as 1-Dimensional objects. Like points, curves could be the base for construction of so
many different objects. We can extrude a curve along another one and make a surface, we can
connect different curves together and make surfaces and solids, we can distribute any object along a
curve with specific intervals and so many other ways to use a curve as a base geometry to generate
other objects.

Fig.4.3. A simple <Grid Rectangular> component with its predefined values.

You can change the size of grid by a <number slider> as its distance input (S). You can also change
the orientation of the points. To do this, you need a plane to stick your grid on it. Here, I introduced
an <XY plane> component (Vector > Constants > XY plane) which is a predefined plane in the
orientation of X and Y axis and I displaced it in Z direction by a <Z unit> component (Vector >
Constants > Z unit) which is a vector along Z axis with the length (magnitude) of one. I can change
the height of this displacement by the size of vector through a <number slider> that I connected to
the input of the <Z unit> component; changing the position of the <XY plane> along the Z axis would
change the position of the grid.

Displacements

We generated many point grids in chapter 3 by <series> and <pt> components. But there is a
component called <Grid rectangular> (Vector > Point > Grid rectangular) which produces a grid of
points. We can control the number of points in X and Y direction and the distance between points
(equal in both directions) in this component.

Ch
ap

te
r_

4

52 Transformations

G
A

_V
er

.0
2

Fig.4.4. Manipulated Grid (selected in green) with one <number slider> for scale of the grid (distance
between points) and another with a <z unit> and <XY plane> to change the Z coordinates of the grid’s
points.

Now if you look at the output of the <grid rectangular> you can see that we have access to the
whole points as well as grid cells and cell centers. For this experiment, I am looking for a bunch of
lines that start from the grid cells’ centre points and spread out of it to the space, using these grids
only. I can simply connect points from two <grid> component’s M part to a <line> component, and
generate bunch of lines. Then changing the size of second grid would result on the direction of all
lines. Here the problem is the length of lines which in this case would be different from each other,
but I want to draw lines with the same length, and I need another strategy and that’s why I am going
to use a <line SDL> component.

A <line SDL> component draws a line by Start point(S), Direction (D), and Length (L). So the length of
lines is controllable. Exactly what I need; I have the start points (cell’s midpoint), and length of my
lines (whatever I like). What about the direction? I wanted to use the second grid-cell midpoints as
the second point of lines so the direction of my lines is in the direction of the connecting lines of
grid-cell mid points. To define these directions here I need some vectors instead of lines. That’s why I
am going to make a set of vectors by these two point sets to create directions for my <line SDL>
component.

Fig.4.5. Creating vectors from the cells’ midpoints of the first grid toward the cells’ midpoints of the
second grid by <vector 2pt> component (Vector > Vector > vector 2pt). This component creates
vectors by start and end point of vectors.

Ch
ap

te
r_

4

53 Transformations

G
A

_V
er

.0
2

Fig.4.6. The <line SDL> component generates bunch of lines from the grid cell midpoints that spread
out into space because of the bigger size of the second grid. I can change the length of lines by
<number slider> and I can change their direction by changing the size of second grid.

For the next step, I want to add a polygon at the end of each line and extrude it towards the start
point of the line to see the generative potentials of these curve components. To generate polygons I
have to add some planes at the end point of my lines as base planes to be able to create polygons.

Fig.4.7. By using an <end points> component (Curve > Analysis) and using these ‘end points’ as ‘origin
points’ for a set of planes I could generate my base planes. Here I used <Plane Normal> component
(Vector> Plane) which produces a plane by an origin point (lines’ end point) and a Z direction vector
for the plane (a normal vector which is perpendicular to the plane). Here I used same vectors of the
line direction as normal vectors for planes.

Ch
ap

te
r_

4

54 Transformations

G
A

_V
er

.0
2

Fig.4.8. Adding a <Polygon> component and Using generated planes as base planes for polygons, we
would have a set of polygons at the end of each line and perpendicular to it. As you can see, these
polygons have same size but I want to apply a system of size differentiation to them to have a
smooth shape change at the end.

Fig.4.9. With a <List Length> component I get the number of my lines and the next <function>
component which is the square root of the input (F(x)=Sqrt(x)), calculates the number of lines at each
row. I used a <series> component with the start point and step size = 0.1 wile the number of values
are coming from the number of rows. So I generated a list of gradually growing numbers equal to the
number of polygons at each row. To be able to use these values for all polygons, I duplicated these
data list with the amount of columns (here equal to the number of rows) and attached it to the
Radios input of polygons. As you can see in the model, at each row, the size of polygons gradually
changed and this pattern repeated up to the last one.

Ch
ap

te
r_

4

55 Transformations

G
A

_V
er

.0
2

Fig4.10. In the last step, I used an <Extrude Point> component (Surface>Freeform) and I attached
lines’ start points as the points towards which I wanted my polygons to extrude.

Fig4.11. Now by using ‘Remote Control Panel’ from View menu, you can simply change the values of
number sliders for different options and check the overall look of the model and select the best one.
Don’t forget to uncheck the Preview option of unnecessary objects.

Ch
ap

te
r_

4

56 Transformations

G
A

_V
er

.0
2

Fig.4.12. Final model

Ch
ap

te
r_

4

57 Transformations

G
A

_V
er

.0
2

4_3_Combined Experiment: Swiss Re

Today it is very common to design the concept of towers with associative modelling methods. It
allows designers to generate differentiated models, simple and fast. There are so many potentials to
vary the design product and find the best concept quite quickly. Here I decided to model a tower and
I think the “Swiss Re” tower from ‘Foster and partners’ seems sophisticated enough for modelling
experiments.

First have a look at the project:

Fig.4.13. Swiss Re HQ, 30 St Mary Axe, London, UK, 1997-2004, Photos from Foster and Partners
website, http://www.fosterandpartners.com.

Let me tell you the concept. I am going to draw a circle as outline of the tower and copy it to make
some of the floors in which façade changes its curvature. Then I will rescale these floors to match
the shape, and then I will make the skin of the tower by them. Finally for the façade’s structural
elements I will add up section polygons and make these elements with them. To do this process, I
am going to assume the size and portions and I will deal with the model with very simple geometries
to make the process simple.

Let’s start with floors. I know that the Swiss Re’s floors are circles that have some V-shaped cuts
around them, but I just used a simple circle to make the outline of the tower. I want to copy these
floors in certain heights which make it possible to play around proportions of the tower visually. As I
said before, these points are located in positions of curvature change in façade.

Ch
ap

te
r_

4

58 Transformations

G
A

_V
er

.0
2

Fig.4.14. A <circle> component with <number slider> as radios is the outline of the tower. This circle
copied by <move> component along Z direction by a <Z unit> vector component for 6 times above
itself. These numbers are provided by ‘set multiple numbers’ manually and they are assumptions
about the distance of different parts of the tower (based on the size of the base circle).

Although I generated these basic circles, all the same, but we know that all floors does not have
same size, so we need to rescale them; If we look at the section of the tower we will see that from
the circle which is grounded on earth, they first become bigger up to certain height, look constant on
the middle parts and then become smaller and smaller up to the top point of the tower. So I need to
rescale these sample floors, which means I have to provide a list of scale factors. Here again I am
going to use another assumption about the scale factors of these sample floors. You could change
these numbers to see if your project looks like the original design, more or less.

Fig.4.15. I need a <scale> component (XForm > Affine > Scale) to rescale my sample floors. The
<scale> component needs the geometry to rescale, centre for scaling and the factor of scaling. So I
need to feed the geometry part of it by our floors or circles which is the output of the <move>
component. The predefined centre of scaling is the origin point, but if I scale floors by the origin as
the centre, they would displace in space because their height also rescales. I need the centre of
rescaling at the same level at each floor. It should be for each one and exactly at the centre of floor.

Ch
ap

te
r_

4

59 Transformations

G
A

_V
er

.0
2

That’s why I used a <Centre> component (Curve > Analysis > Centre) which gives me the centre of
circles. By connecting it to the <scale> you can see that all circles would rescale in their level without
displacement.

Again I have to say that factors of scale are assumptions about the scale factors in different height
samples that I made before. These values could be changed to see which combination best fits the
overall view. They all set in one <number> component.

Fig.4.16. Now if I loft all these sample floors by a <loft> component (surface > freeform > loft) the
first image of the tower appears. Little by little I should uncheck the preview option of the previously
generated points and curves to clean up the scene.

Ok! Let’s go for façade elements.

The facade’s structural elements are helical shapes that have cross section like two connected
triangles, but again to make it simple, I just model the visible part of it which is almost like a triangle
in plan. I need these sections to ‘loft’ them to create their volume.

I want to generate these triangle sections on the façade. To do that, first I need to find the position
of these triangles on the façade. I think if I generate a curve on the façade surface and divide it, it
would be an acceptable place to posit all triangles before any transformation.

Ch
ap

te
r_

4

60 Transformations

G
A

_V
er

.0
2

Fig.4.17. I used an <end points> component to get the start/end points of my sample floors. By
attaching these points as the vertices to an <interpolate> component (curve > spline > interpolate) I
would have a curve which is positioned on the façade.

Fig.4.18. Here I divided the <interpolate> curve into 40 parts. The number of divisions helps the
smoothness of the element when we want to adjust it on the façade.

Fig.4.19. Now division points become base points to generate <polygon> on the façade. I set ‘sides’ to
3 to generate triangles and size of the elements, ‘R’ part, is controllable by <number slider>.

Ch
ap

te
r_

4

61 Transformations

G
A

_V
er

.0
2

Fig.4.20. Façade structural elements are spiral and turn around the skin, up to the top point of tower.
To achieve this, I have to rotate all triangle sections gradually. I want to use <Rotate> component
and for that, I need to provide angles of rotation. As I said, angles of rotation should be a list of
numbers growing slowly. The <series> component here generates our angles of rotation and it has as
many items as the <divide> component (points-triangles) has. So as the result, all section triangles
rotate around the façade.

Fig.4.21. Now if I <loft> all section triangles, you see a single façade element appears. Degree of
rotation and size of element is controllable so we need to match it to the façade in its best look.

Ch
ap

te
r_

4

62 Transformations

G
A

_V
er

.0
2

Fig.4.22. An <interval> component (as mentioned before, in new versions you can use Scalar >
domain > domain) used to define numerical range from 0 to 360. This numerical range divided by a
<range> component into 10 parts and the result is used as angle factors for a <rotate> component.
So as it is shown in the image, the façade elements are distributed all around the base circle.

Domains

As I mentioned before, Domains (or intervals) are numeric ranges. They are real numbers from lower
limit to upper limit. Since I said ‘real numbers’ it means we have infinite numbers in between which
means we need different types of usage for these numerical domains. As we experimented before,
we can divide a numerical range and get divisions as evenly distributed numbers between two
extremes.

Here I want to distribute façade elements all around the base circle. To do that, I need an interval to
cover the whole base circle.

Fig.4.23. Now if I <mirror> (XForm > Euclidian > Mirror) the rotated geometries by <YZ plane> (Vector
> Constants > YZ plane) I would have the façade elements in a mirrored helical shape. So at the end I
have a lattice shape geometry around the tower.

Ch
ap

te
r_

4

63 Transformations

G
A

_V
er

.0
2

Fig.4.24. Preview the façade again, we have a rough representation of the ‘Swiss Re’ with an
associative technique.

Fig.4.25. To generate the geometry in Rhino, Select those components which created the desired
geometry in the scene, and select ‘Bake Selected Objects’ from canvas toolbar or component context
menu.

Ch
ap

te
r_

4

64 Transformations

G
A

_V
er

.0
2

4.26. Final model. Although it is not exactly the same as the original one, but for a sketch model in a
short time, it would work.

Fig.4.27. Between main structural elements,
there are other smaller scale structures and I
think you can model them by yourself. Photo by
the author.

Ch
ap

te
r_

4

65 Transformations

G
A

_V
er

.0
2

4_4_On Attractors

“Attractor is a set of states of a dynamic physical system towards which that system tends to evolve,
regardless of the starting conditions of the system. A point attractor is an attractor consisting of a
single state. For example, a marble rolling in a smooth, rounded bowl will always come to rest at the
lowest point, in the bottom center of the bowl; the final state of position and motionlessness is a
point attractor.” (Dictionary.com/Science Dictionary)

Fig.4.28. Strange Attractor (Illustration from: http://www.cs.swan.ac.uk/~cstony/research/star/)

In case of design and geometry, attractors are elements (usually points but could be curves or any
other geometry) that affect other geometries in the space, change their behaviour and make them
displace, re-orientate, rescale, etc. They can articulate the space around themselves and introduce
fields of actions with specific radios of power. Attractors have different applications in parametric
design, since they have the potential to change the whole objects of design constantly. Defining a
field, attractors could also affect the multiple agent systems in multiple actions. The way they could
affect the product and the power of attractors are all adjustable. We go through the concept of
attractors in different occasions so let’s have some very simple experiments first.

http://www.cs.swan.ac.uk/~cstony/research/star/�

Ch
ap

te
r_

4

66 Transformations

G
A

_V
er

.0
2

Fig.4.29. Base <point_grid> and <polygon>s and the <attractor_1>.

The algorithm is so simple. Based on the <distance> between <attractor_1> and the <Pt-grid>, I want
to affect the radius of the <polygon>, so the ‘relation’ between attractor and polygons define by
their distance.

I need a <distance> component to measure the distance between <attractor_1> and the polygon’s
center or <pt_grid>. Because this number might become too big, I need to <divide> (Scalar >
Operators > Division) this distance by a given number from <number slider> to reduce the power of
the <attractor_1> as much as I want.

Point Attractors

I have a grid of points and I want to generate a set of polygons on them. I also have a point that I
named it <attractor_1> and I draw a <circle> around it, just to realize it better. I want this
<attractor_1> affects all my <polygon>s on its field of action. It means that based on the distance
between each <polygon> and the <atractor_1>, and in domain of the <attractor_1>, each <polygon>
responds to the attractor by change in its size.

Fig.4.30. <Distance> divided by a number to control the ‘power’ of the <attractor_1>. Although I
made a Cluster by <attractor_1> and its <circle> it seems that new versions of Grasshopper do not
like clusters anymore so please use a simple <Pt> as <Attractor_1>.

Ch
ap

te
r_

4

67 Transformations

G
A

_V
er

.0
2

Now if you connect this <div> component to the Radios (R) part of the <polygon> you can see that
the scale of polygons increases when they go farther than the <attractor_1>. Although this could be
good for the first time, we need to control the maximum radius of the polygons, otherwise if they go
farther and farther, they become too big, intersecting each other densely (it also happens if the
power of the attractor is too high). So I have to control the maximum radios value of the polygons
manually.

Fig.4.31. By using a <minimum> component (Scalar > Util > Minimum) and a user defined number, I
am telling the algorithm to choose the value from the <div> component, if it is smaller than the
number that I define as the maximum radios by <number slider>. As you can see in the image, those
polygons that going to be bigger than the <max_rad> remain constant, and we can literally say they
are not in the power field of attractor.

Now if you change the position of the <attractor_1> in the Rhino workplace manually, you can see
that all polygons get their radius according to the <attractor_1> position.

Fig.4.32. Effect of the <attractor_1> on all polygons. Displacement of the attractor, affects all
polygons accordingly.

Ch
ap

te
r_

4

68 Transformations

G
A

_V
er

.0
2

Fig.4.33. With the same concept, I can displace polygons in Z direction based on the numbers coming
from the <Min> component or changing it by mathematical functions, if necessary. So the usage of
attractors is not limited to size only!

Simple !!!!!!! I can do any other function on these polygons like rotate, change colour, etc. But let’s
think what would happen if I had two attractors in the field. I make another cluster which means
another point in Rhino associated with a <point> and <circle> in Grasshopper.

It seems that the first part of the algorithm is the same. Again I need to measure the distance
between this <attractor_2> and the polygons’ center or <pt_grid> and then divide it by the same
<number slider> as <att_power> to control the power of attractor.

Fig.4.34. Introducing second <attractor_2> and applying the same algorithm to it.

Now we have two different data lists that include the distance from the polygon to each attractor.
Since the closer attractor would affect the polygon more, I should find which one is closer and use
that one, as the source of action. I will use a <min> component to find which distance is minimum or
which point is closer.

Ch
ap

te
r_

4

69 Transformations

G
A

_V
er

.0
2

4.35. Finding the closer attractor. After finding the closer one by <min> component, the rest of the
process would be the same. Now all <polygon>s are being affected by two attractors.

Fig.4.36. Again you can change the position of the attractors and see how all polygons reacting
accordingly.

We can add more and more attractors. The concept is to find the attractor which is closer for each
polygon and apply the predefined effect. This concept is useful to deal with design issues with huge
amount of small scale elements.

My aim here is to design a porous wall for an interior space to have a multiple framed view to the
other side. This piece of work could be cut from sheet materials. In my design space, I have a plane
sheet (wall), two curves and bunch of randomly distributed points as base points of cutting shapes. I
decided to generate some rectangles by these points, cut them out of a sheet, to make this porous

Curve Attractors: Wall project

Let’s complete this discussion with another example but this time by Curve attractors because in so
many cases you need to articulate your field of objects with linear attractors instead of points.

Ch
ap

te
r_

4

70 Transformations

G
A

_V
er

.0
2

wall. I also want to organize my rectangles by this two given curves so at the end, my rectangles are
not just some scattered rectangles, but randomly distributed in accordance to these curves which
have a level of organisation in macro scale and controlled randomness in micro scale.

What I need is to generate this bunch of random points and displace them towards the curves,
literally based on the amount of power that they receive from them. I also decided to displace points
towards both curves, so I do not need to select closer one. Then I want to generate my rectangles
over these points and finally I will define the size of these rectangles in relation to their distance to
the attractors.

Fig.4.37. Generating a list of randomly distributed <point>s and introducing attractors by two
<curve> component (Params > Geometry > Curve) in the space of a sheet. I used an <interval>
component to define the numeric interval between 0 (defined manually) and <number slider> for the
range of random points (you should use <Domain> component in new versions as mentioned before).
I would rename the <Pt> to the <Rnd_Pt_Grid>.

Fig.4.38. When the attractor is a point, you can simply displace your geometry towards it. But when
the attractor is a curve, you need to find a relative point on curve and displace your geometry
towards that specific point. And this point must be unique for each geometry, because there should
be one to one relation between attractor and any geometry in the field. If we imagine an attractor
like a magnet, it should pull the geometry from its closest point to the object. So basically what I first
need is to find the closest point of <Rnd_pt_grid> on both attractors. These points are the closest
points on attractors for each member of the <Rnd_Pt_Grid> separately. I used <Curve CP>
component (Curve > Analysis > Curve CP) which gives me the closest point of curve to my
<Rnd_Pt_Grid>.

Ch
ap

te
r_

4

71 Transformations

G
A

_V
er

.0
2

Fig.4.39. In order to displace points towards the attractors, I need to define a vector for each point in
<Rnd_Pt_Grid>, from point to its closest point on the attractors. Since I have the start and end point
of the vector I use a <vector 2Pt> component. The second point of the vector (B port of the
component) is the closest point on the curve.

Fig.4.40. Now I connected all my <Rnd_Pt_Grid> to two <move> components to displace them
towards the attractors. But if I use the vector which I created in the last step, it displaces all points on
curves and that’s not what I want. I want to displace the points in relation to their distance to the
attractor curves. If you look at the <Curve CP> component it has an output which gives us the
distance between each point and the relevant closest point on curve. Good! We do not need to
measure the distance by another component. I just used a <Function> component and I attached the
distance as X and a <number slider> to Y to divide the X/Log(Y) to control the factor of displacement
(Log function change the linear relation between distance and the resulting factor).

Now I need to change the size of my vectors based on these newly created factors. Here I need a
component to change the size of a vector and that’s why I used a <multiply> component (Vector >
Vector > Multiply) which does that for me, so I attached the <vector 2P> as base vectors and I
changed their size by the size factors, and I attached the resulting vectors to the <move> components
which displace the <Rnd_Pt_Grid> in relation to their distance to the attractors, and towards them.

Ch
ap

te
r_

4

72 Transformations

G
A

_V
er

.0
2

Fig.4.41. The <number slider> changes the power with which attractors displace objects towards
themselves.

Ch
ap

te
r_

4

73 Transformations

G
A

_V
er

.0
2

Fig.4.42. The next step is the generation of rectangles. I used a <rectangle> component
(curve>primitive) and I attached the <move>d or displaced points to it as base points. But as I told
you, I want to change the size of the <rectangle>s based on their distances to each <attractor> as
well. So I used the same numerical values which I used for vector magnitude and I changed them by
two functions. I divided these factors by 5 for the X value of the rectangles and I divided them by 25
for their Y value. As you can see, rectangles have different dimensions based on their original
distance from the attractor but they all have same ratio because of the above division factors. You
can change these division factors (5, 25) to anything you want or use sliders to change them
gradually to see which ratio is more delicate for your taste.

Fig.4.43. Manipulating the variables would result in different models and I can choose the best one
for my design purpose.

Ch
ap

te
r_

4

74 Transformations

G
A

_V
er

.0
2

Fig.4.44. Model of the final design product as a porous wall system. Different shadow effects which
can be considered as a factor to control the size of openings.

Chapter_5_Parametric Space

Ch
ap

te
r_

5

76 Parametric Space

G
A

_V
er

.0
2

Chapter_ 5_Parametric Space

Our survey in Geometry observes objects in space; Digital representation of forms and tectonics;
different articulation of elements and multiple processes of form generations; from classical ideas of
symmetry and pattern up to NURBS and Meshes.

We are dealing with objects. These objects could be boxes, spheres, cones, curves, surfaces or any
articulation of them. In terms of their presence in the space they generally divided into points as 0-
dimensional, curves as 1-dimensional, surfaces as 2-dimensional and solids as 3-dimensional objects.

We formulate the space by coordinate systems to identify some basic properties like position,
direction and measurement. The Cartesian coordinate system is a 3 dimensional space which has an
Origin point O=(0,0,0) and three axis intersecting at this point which make the X, Y and Z directions.
But we should consider that this 3D coordinate system also includes two-dimensional (flat space (x,
y)) and one-dimension (linear space (x)) systems as well. What we know as parametric design, deals
with these spaces. We need to go through these spaces to design ‘parametric’ with freeform curves
and surfaces. While parametric design shifts between these spaces, we need to understand them as
parametric spaces.

5_1_One Dimensional (1D) Parametric Space

The X axis is an infinite line which has some numbers associated with different positions on it. Simply
x=0 means the origin and x=2.35 a point on the positive direction of the X axis which is 2.35 unit
away from the origin. This simple, one dimensional coordinate system could be parameterised on
any curve in the space. So basically not only the World X axis has some real numbers associated with
different positions on it, but also any curve in the space has the potential to be parameterized by a
series of real numbers that show different positions on the curve. So in our 1D parameter space
when we talk about a point, it could be described by a real number which is associated with a
specific point on a curve we are dealing with.

It is important to know that since we are not working on the world X axis any more, any curve has its
own parameter space and these parameters does not exactly match the universal measurement
systems. Any curve in Grasshopper has a parameter space starts from zero and ends in a positive
real number (Fig.5.1).

Ch
ap

te
r_

5

77 Parametric Space

G
A

_V
er

.0
2

Fig.5.1. 1D-parameter space of a curve. Any ‘t’ value is a real number associated with a position on
the curve.

So talking about a curve and working and referencing some specific points on it, we do not need to
deal always with points in 3D space with p=(X,Y,Z) but we can recall a point on a curve by p=t as a
specific parameter on it. And it is obvious that we can always convert this parameter space to a point
in the world coordinate system. (Fig.5.2)

Fig.5.2. 1D-parmeter space and conversion in 3D coordinate system.

Ch
ap

te
r_

5

78 Parametric Space

G
A

_V
er

.0
2

5_2_Two Dimensional (2D) Parametric Space

Two axis, X and Y of the World coordinate system deals with the points on an infinite flat surface in
that, each point on this space is associated with a pair of numbers p=(X,Y). Quite the same as 1D
space, here we can imagine that all values of 2D space could be traced not only on World’s
coordinate flat surface, but also on any surface in space. So basically we can parameterize a
coordinate system on a curved surface in space, and call different points of it by a pair of numbers
here known as UV space, in which any point P on the surface is P=(U,V). Again we do not need to
work with 3 values of P=(X,Y,Z) as 3D space to find the point and instead, we can work with the UV
“parameters” of the surface. (Fig.5.3)

Fig.5.3. UV and 2D parameter space.

These “Parameters” are specific for each surface by itself and they are not generic data like the
World coordinate system, and that’s why we call them parametric! Again we have access to the 3D
equivalent coordinate of any point on the surface. (Fig.5.4)

Fig.5.4. Equivalent of the point P=(U,V) on the world coordinate system p=(X,Y,Z).

Ch
ap

te
r_

5

79 Parametric Space

G
A

_V
er

.0
2

5_3_Transition between spaces

It is a crucial part in parametric thinking of design to know exactly which coordinate system or
parameter space we need to work with, in order to design. Working with free form curves and
surfaces, we need to provide data for parameter space but we always need to go back and forth for
the world coordinate system to provide data for other geometry creations or transformations. It is
more complicated in scripting, but since Grasshopper has a visual interface rather than code, you
would simply identify which sort of data you need to provide for your design purpose.

Here note that it is not always a parameter or a value in a coordinate system that we need in order
to call geometries in Generative Algorithms and Grasshopper, sometimes we need just an index
number to do it. If we are working with bunch of points, lines or whatever, and they have been
generated as a group of objects, like point clouds, since each object associated with a natural
number that shows the position of it in a list of all objects, we just need to call the number of the
object as its ‘index’ instead of any coordinate system. The index numbering like array variables in
programming is a 0-based counting system (Fig.5.5).

Fig.5.5. Index number in a group of objects is a simple way to call one. This is a 0-based counting
system which means numbers start from 0.

So as mentioned before, in Associative modelling we generate our geometries step by step as some
related objects and for this reason we go into the parameter space of each object and extract
specific information of it and use it as the base data for the next steps. This could be started from a
simple field of points as basic generators and ends up at tiny details of the resultant model, in
different hierarchies.

Ch
ap

te
r_

5

80 Parametric Space

G
A

_V
er

.0
2

5_4_Basic Parametric Components

5_4_1_Curve Evaluation
The <evaluate> component is the function that finds the point on a curve or surface, based on the
parameter we feed. The <evaluate curve> component (Curve > Analysis > Evaluate curve) takes a
curve and a parameter (a number) and gives back a point on curve on that parameter.

Fig.5.6. The evaluated point on <curve> on specific parameter which comes from the <number
slider>.

Fig.5.7. We can use any <curve> that drawn in Rhino or in Grasshopper to <evaluate>. And you see
that we can use <series> of numbers as parameters to <evaluate> instead of one parameter. In the
above example, because some numbers of the <series> component are bigger than the domain of the
curve, you see that <Evaluate> component gives me warning (becomes orange) and that points are
located on the imaginary continuation of the curve.

Ch
ap

te
r_

5

81 Parametric Space

G
A

_V
er

.0
2

Fig.5.8. Although the ‘D’ output of the <curve> component gives us the domain of curve (minimum
and maximum parameters of the curve), alternatively we can feed an external <curve> component
from Param > Geometry and in its context menu, check the Reparameterize option. It sets the
domain of the curve from 0 to 1. So basically I can track all <curve> long by a <number slider> or any
numerical set between 0 and 1 and not be worry that parameters might go beyond the numerical
domain of the curve.

There are other useful components for parameter space on curves in Curves > Analysis / Division
that we would talk about them later.

5_4_2_Surface Evaluation
While for evaluating a curve we need a number as parameter (because curve has a 1D-space) for
surfaces we need a pair of numbers as parameters (U, V), with them, we can evaluate a specific
point on a surface. We use <evaluate surface> component (Surface > Analysis > Analysis) to evaluate
a point on a surface on specific parameter.

We can simply use <point> components to evaluate a surface by using it as UV input of the <Evaluate
surface> (it ignores Z dimension) and you can track your points on the surface just by X and Y parts
of the <point> as U and V parameters.

Ch
ap

te
r_

5

82 Parametric Space

G
A

_V
er

.0
2

Fig.5.9. A point <Evaluate>d on the <surface> based on the U,V parameters coming from the
<number slider> with a <point> component that make them a pair of Numbers. Again like curves you
can check the ‘Reparameterize’ on the context menu of the <surface> and set the domain of the
surface 0 to 1 in both U and V directions. Change the U and V by <number slider> and see how this
<evaluate>d point moves on the surface (I renamed the X,Y,Z inputs of the component to U,V,-
manually).

Fig.5.10. Since we need <points> to evaluate a <surface> as you see we can use any method that we
used to generate points to evaluate on <surface> and our options are not limited just to a pair of
parameters coming from <number slider>, and we can track a surface with so many different ways.

Fig.5.11. To divide a surface (like the above example) in certain rows and columns we can use <Divide
surface> or if we need some planes across certain rows and columns of a surface we can use <surface
frame> both from Surface set under Util paenl.

Ch
ap

te
r_

5

83 Parametric Space

G
A

_V
er

.0
2

5_4_3_Curve and Surface Closest Point
We always don’t have the parameter to look for points, some times we have the point and we want
to know its parameter for further uses. This is when finding closest point comes to play. <Curve CP>
and <surface CP> components (curve/surface closest point) are two components that help us to do
that.

Fig.5.12. <Curve Cp> and <Surface CP> help us to find the parameter of a point on a curve or surface.
There are other components that you need to feed them with these parameters.

5_5_On Object Proliferation in Parametric Space

For so many design reasons, designers use surfaces to proliferate some other geometries on them.
Surfaces are flexible, continues two dimensional objects that represent acceptable bases for this
purpose. There are multiple methods to deal with surfaces like Penalisation, but here I am going to
start with one of the simplest one and we will discuss about some other methods later.

We have a free-form surface and a simple geometry like a box. The question is, how we could
proliferate this box over the surface, in order to have a differentiated surface i.e. as an envelope, in
that we have control of the macro scale (surface) and micro scale (box) of the design separately, but
in an associative way.

The method is like this: In order to accomplish the task, we should divide the surface into desired
parts and generate our boxes on these specific locations on the surface and re-adjust them if we
want to have local manipulation of these objects.

Generating the desired locations on the surface is easy. We can divide surface or we can generate
some points based on any numerical data set that we want.

About the local manipulation of proliferated geometries, again we need some numerical data sets
which could be used for transformations like rotation, local displacement, resize, adjustment, etc.

Ch
ap

te
r_

5

84 Parametric Space

G
A

_V
er

.0
2

Fig.5.13. A free-form, reparameterized, <surface> being <evaluate>d by a numeric <range> from 0 to
1, divided by 30 steps by <number slider> in both U and V direction. (Here you can use <divide
surface> but I used the <point> component to remind you all point-generation techniques from
chapter two are possible options to insert into these experiment).

Fig.5.14. As you see the <evaluate> component gives ‘normal’ and ‘plane’ of any evaluated points on
the surface. I used these planes or frames to generate series of <box>es on them while their sizes are
being controlled by <number slider>s. the <box> component (surface>primitive> center box) needs
center of the box and its length in X,Y and Z directions

In order to manipulate boxes locally, I just decided to rotate them. I want to set the rotation axis
parallel to the U direction of the surface and based on the situation of this simple surface I am going
to choose the XZ plane as the base plane for their rotation (Fig.5.15).

Ch
ap

te
r_

5

85 Parametric Space

G
A

_V
er

.0
2

Fig.5.15. Local rotation of box.

Fig.5.16. The <rotate> component needs three inputs. First is the geometry which means <box>es.
The second item is rotation angle. I want to rotate them by random values (you can rotate them
gradually or any other way) so I want to generate a set of <random> numbers and I set the Number
of random values as much as boxes. So I just used a <list length> component to realize how many
<box>es I have and attached it to the ‘N’ input of the <random> and attached the random values as
angles of rotation to the <rotate> component. Finally to define the plane of axis, I generated <XZ
plane>s on any point that I <evaluate>d on the <surface> and I attached it to the <rotate>
component.

Don’t forget to uncheck the Preview of the previously generated objects to enhance the
performance of the process.

Ch
ap

te
r_

5

86 Parametric Space

G
A

_V
er

.0
2

Fig.5.17. Final geometry.

Ch
ap

te
r_

5

87 Parametric Space

G
A

_V
er

.0
2

Fig.5.18. Try to combine different concepts in your projects. Here instead of random values for
rotation of boxes, I used a point attractor and set its distance from each box as the rotation factor
and as you see, new results are shown in the experiment. These are techniques for local manipulation
of the boxes, but you know that you could apply changes to the global scale as well.

Non-uniform use of evaluation

During a project this idea came to my mind that why should I always use the uniform distribution of
points over a surface and add components to it? Can I set some criteria and evaluate my surface
based on that and select specific positions on the surface? Or since we use U,V parameter space and
incremental data sets (or incremental loops in scripting) are we always limited to a rectangular
division on surfaces?

There are couple of questions regarding the parametric tracking of a surface but here I am going to
deal with a simple example to show how in specific situations we can use some of the U,V
parameters of a surface and not a uniform rectangular grid over it.

Ch
ap

te
r_

5

88 Parametric Space

G
A

_V
er

.0
2

Fig.5.19. I introduced two general surfaces to Grasshopper by <srf_top> and <srf_bottom> as space
covers and I Reparameterized them. I also generated a numerical <range> between 0 and 1, divided
by <number slider>, and by using a <point> component I <evaluate>d these surfaces at that <points>.

Columns Example

I have two Free-form surfaces as covers for a space and I am thinking of creating a social open space
in between. I want to add some columns between these surfaces but because they are free-form
surfaces and I don’t want to make a grid of columns, I decided to limit the column’s length and add
as many places as possible in certain positions with height limit. I want to add two inverted and
intersected cones as columns in this space, just to make a simple shape.

Fig.5.20. Next, I generated bunch of <line>s between all these points, but I also measured the
distance between any pair of points.

Ch
ap

te
r_

5

89 Parametric Space

G
A

_V
er

.0
2

Fig.5.21. Now I need to extract my desired lines from the list. Here I used a <dispatch> component
(Logic >Llist > Dispatch) to select my lines from the list. A <dispatch> component needs Boolean data
which is associated with the data from the list, to send those who associated with True to the A
output and those associated with False, to the B output. The Boolean data comes from a simple
comparison function. In this <function> I compared the line length with a given number as maximum
length of line (x>y, x=<number slider>, y=<distance>). Any line length less than the <number slider>
creates a True value by the function and passes it through the <dispatch> component to the A
output. So if I use lines coming out the <dispatch> A output I am sure that they are all smaller than
the certain length, so they are my columns.

Fig.5.22. The geometry of columns is two inverted cones which are intersecting at their tips. Here
because I have the axis of the column, I want to draw two circles at the end points of the axis and
then extrude them to the points on the curve which make this intersection possible.

Ch
ap

te
r_

5

90 Parametric Space

G
A

_V
er

.0
2

Fig.5.23. By using an <end points> component I can get both ends of columns. So I attached these
points as base points to make <circle>s with given radios. You already know that these circles are flat
but our surfaces are not flat. So I need to <project> my circles on main surfaces to find their adjusted
shape. I used a <project> component (Curve > Util > Project) for this reason. B part of the <project>s
connected to the top and bottom surface.

Fig.5.24. The final step is to extrude these projected circles towards the specified points on column’s
axis (Fig.5.23). I used <extrude point> component and then I attached <project>ed circles as base
curves. For the extrusion point, I attached all columns’ axis to a <curve> component and I
‘Reparameterized’ them, then I <evaluate>d them in two specific parameter of 0.6 for top cones and
0.4 for bottom cones.

Ch
ap

te
r_

5

91 Parametric Space

G
A

_V
er

.0
2

Fig.5.25. Although in this example, again I used the grid based tracking of a surface, I used additional
criteria to choose some of points and not all of them uniformly.

Fig.5.26. Final model.

The idea of using Parameter space of curves and surfaces to proliferate objects on them has so many
options and methods. Don’t stick to one of them and try to explore more. We will see a bit more.

Ch
ap

te
r_

5

92 Parametric Space

G
A

_V
er

.0
2

5_6_On Data Trees

Talking about parametric space and using related components, now it is time to open up a new
subject about data management in Grasshopper called ‘Data Tree’, which little by little you might
need it when working with complex models, especially in parametric space of curves and surfaces.

One of the great potentials of generative algorithms is that they enabled us to design and manage
hundreds of objects together associatively. Working with huge amount of objects, sometimes we
need to apply commands to all of them and sometimes we need to extract one item and apply a
command to it. So we need to have access to our objects and manage our data (objects) in different
ways.

Imagine we have 5 curves in our design space and we divided them into 10 parts. Now we want to
extract all second points of these curves and connect them together with a new interpolated curve.

Fig.5.27. A <curve> component with 5 curves, all are <Divide>d by 10. If you select index number 1
with <item> component from division points, you see that all second points of curves are being
selected, not just the second point of the first line. Great!. But if you attach these points to an
<interpolate> to draw a curve, you see the <interpolate> shows error and does not draw anything!

Here to understand the problem lets introduce a useful component and observe the situation. This
component is <Param Viewer> from Params>Special. Let’s compare the result:

Ch
ap

te
r_

5

93 Parametric Space

G
A

_V
er

.0
2

Fig.5.28. The <Param Viewer> component shows some other data information inside components
which is the reason of the error in <interpolate>.

What you see in <Param Viewer> is the concept of Data Tree in Grasshopper. As you can see in the
Figure.5.28 the <curve> component has 5 items but when these curves <divide>d and generated
some points for each curve, points has been sorted into different data lists called Branches. This
means that the result of the <divide> component is not just one list of data comprised of 55 points,
but now we have five lists of data each has 11 points inside. So the main data of the ‘Tree’ has been
divided into ‘Branches’ in order to facilitate further usage and easier access to them in our design.
That’s why when we select <item> index 1, it selects items with index 1 in each list.

Fig.5.29. <Param Viewer> with ‘Draw Tree’ option checked in their context menu to show the
difference between data branches in each component.

Ch
ap

te
r_

5

94 Parametric Space

G
A

_V
er

.0
2

Now, why the <interpolate> component cannot draw a curve? What is the problem? Let’s have a
closer look at the information we gathered from our situation:

Fig.5.30. <Param Viewer> and <Panel> of A:curves and B:selected index 1 points.

In the first image of the Figure.5.30 the <Param viewer> of the <curve> component shows one main
branch of data. If you look at its <Panel>, you see there is a list of curves under the title of { 0 }. Here
in Grasshopper { } is the symbol for data tree and shows the branch that the object is positioned in.
So all curves in the first image under the { 0 } are situated in the main branch. If you go back to the
Figure.5.28 you see that for the <curve>‘s <param viewer>, it says (Paths = 1) which means we have
only one branch of data and in this branch { 0 } (N = 5) we have 5 items.

But in the second image of the Figure.5.30 we can see that the data in the <item> component listed
under five different branches: { 0:0 }, { 0:1}, … { 0:4 } and there is one point at each list. If you again
check the Figure.5.28 you see that the third <param viewer> has 5 branches (paths = 5) and each
branch of data has one item (N = 1 for all branches). This means that the data has been divided into
different branches and when transferred into <interpolate> component, they are separate from
each other and <interpolate> component cannot draw polyline by five separated points.

Ch
ap

te
r_

5

95 Parametric Space

G
A

_V
er

.0
2

How can we solve this problem?

Fig.5.31. To solve this problem I used a <Flatten> component (Logic>Tree)
which as it sounds, converts data from multiple branches to one branch which
is visible in <param viewer>. As you can see in the second <panel>, now we
have five points under the branch of { 0 } and <interpolate> component can
draw a polyline by these five points.

To summarize and get the concept, we should understand that while working with multiple objects
in different levels, data has hierarchical structure in branches and each branch of data has its own
path as an index number which shows the unique address of that branch(i.e. { 0:1}). It is important
to know that working with list management components is affected by this concept and these
components work on each branch as a separate list. We might need to generate branches of data by
ourselves or converge branched data into one branch, or other types of data management that I try
to use them in later experiments.

Fig.5.32. Data Branches on a ‘DATA Tree’.

Ch
ap

te
r_

5

96 Parametric Space

G
A

_V
er

.0
2

Let’s have another example to wrap up the subject:

I want to design a porous surface like what I sketched in Figure.5.33 based on one given surface. I am
going to describe the process a bit fast to see the final bit.

Fig.5.33. Sketch of the desired surface.

To design this porous surface, I want to generate couple of small lines in top and bottom edges of a
surface to loft them together. This would generate some small surfaces which all together make the
general look of my porous surface. I should take care of direction of my small lines to be able to
control the gradual differentiation of surfaces or let’s say the general porosity.

Fig.5.34. I introduced a generic <surface> into canvas and I exploded it by <BRep Components>
(Surface>Analysis) to have access to its edges. Then I selected the bottom and top edge with <item>
by index 0 and 2.

Ch
ap

te
r_

5

97 Parametric Space

G
A

_V
er

.0
2

Fig.5.35. I used the bottom edge to <offset> (Curve>Util), and I also changed the direction of the top
edge with <Flip> (Curve>Util) because I know that the bottom and top edge curves are not in the
same direction. I used <divide> component to divide these edge curves and have multiple points. (We
can use one <divide> component but I don’t like to make it complex now).

Fig.5.36. A <line> component is used to connect all bottom division points to all bottom-offset
division points. Another <line> is used to connect all top-edge division points to their next points in
the list (shift offset = 1).

Ch
ap

te
r_

5

98 Parametric Space

G
A

_V
er

.0
2

Fig.5.37. now if I use these <line> components to <loft>, you see that a surface being generated
which is not my design purpose, even using <weave> component does not help in this situation.

Fig.5.38. looking at <param viewer> of <line> components, we can see that both components have
only one branch of data and when lofted, it lofts all of them together and not as separated pairs of
lines. But here we want our lines to be in different data lists to be treated as single data and when
lofted, they become pairs of lines.

Ch
ap

te
r_

5

99 Parametric Space

G
A

_V
er

.0
2

Fig.5.39. To solve this problem here I used a useful component which is <Graft> (Logic>Tree>Graft
Tree). As you can see, as a result of this component, data lists in both <line> components have been
divided into branches, one branch for each item in the list. Now <loft> component lofts each line from
the first data list to an associated line in the second data list. And we can see that the resultant
geometry is a porous surface as I sketched.

Here, opposite to the first example, we have to sort our data in different branches in order to get
result in multiple geometries otherwise it was only one continuous surface.

Fig.5.40. Here I should remind you that if you again want to draw an interpolate curve on specific
points which you evaluated on these surfaces, since all these surfaces are in different branches of
data and the resultant evaluated points would be in different branches of data as well, in order to
draw a curve, you need to <Flatten> the data list again, make one branch of data for points and pass
it to the interpolate to draw your curve.

The point is to realize that in different components and design situations we have to provide data in
branches or in one branch and there are couple of components in Logic>Tree that help us to do so.

Ch
ap

te
r_

5

100 Parametric Space

G
A

_V
er

.0
2

Fig.5.41. Final model of the porous surface.

Chapter_6_ Deformations and Morphing

Ch
ap

te
r_

6

102 Deformations and Morphing

G
A

_V
er

.0
2

6_1_Deformations and Morphing

Geometry is not always about pure objects. We need to change the portions and general conditions
of volumes and other geometrical products in order to design objects. Deformation and Morphing
are some of the tools to do that.

Deformation and Morphing are among the powerful functions in the realm of free-form design. By
deformations we can twist, shear, bend, … geometries and by Morphing we can deform geometries
from one boundary condition to another.

Let’s have a look at a simple deformation. If we have an object like a sphere, we know that there is a
bounding-box (cage) around it and manipulation of this bounding-box could deform the whole
geometry.

Fig.6.1. Deformation of an object by its Bounding-box (cage).

Based on angel, movement, etc. we might call it shear or bend or free deformation. For any
deformation function, we might need the whole bounding-box, or just one of its sides as a plane or
even one of the points to deform. If you check different deformation components in Grasshopper
you can easily find the base geometrical constructs to perform deformations.

Morphing in animation means transition from one picture to another smoothly or seamlessly. Here
in 3D space it means deformation from one state or boundary condition to another. Morphing
components in Grasshopper work in the same fashion. Here for example <Box morph> component
(XForm>Morph) deforms an object from a reference box (Bounding Box) to a target box, or <Surface
morph> component works with a surface as a base, on that you can deform your geometry, on the
specific domains of the surface and height of the object.

The first one which is <Box Morph> and the next one is <Surface Morph> both from XForm tab
under the Morph panel, and there are couple of additional components there, that could possibly

Ch
ap

te
r_

6

103 Deformations and Morphing

G
A

_V
er

.0
2

provide data for these components in our designs. Since we have couple of commands that deform a
box, if we use these deformed boxes as target boxes then we can deform any geometry in
Grasshopper by combination with Box Morph component.

As you see in Figure 6.2 we have an object which is introduced to Grasshopper by a <Geometry>
component. This object has a bounding-box around it which I draw here just to visualize the
situation. I also draw another box by manually feeding values.

Fig.6.2. Initial object (sphere) and manually fed box.

Fig.6.3. A <Box morph> component (XForm > Morph > Box morph) deforms an object from a
reference box to a target box. Because I have only one geometry I attached it as the geometry and
also as bounding box or reference box to the component (if there are different geometries or in other
cases, you can use <Bounding box> component (Surface > Primitive > Bounding box) as well). I
unchecked the preview of the <Box> component to see the morphed geometry inside it better.

Ch
ap

te
r_

6

104 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.4. Now if you simply change the size of the target box you can see that the morphed geometry
would change accordingly.

Fig.6.5. Here you see that instead of one box, if I produce bunch of boxes, I can start to morph my
object more and more. As you see, differentiated boxes by the <series> component in their Y
dimension, caused differentiation in morphed objects as well.

6_2_On Panelization

One of the most common applications of morphing functions is Panelization. The idea of
panelization comes from the division of a free-form surface geometry into small parts and pieces
especially for fabrication issues. Although free-form surfaces are widely being used in car industry, it
is not an easy job for architecture to deal with them in large scales. Benefit of panelization is to
divide a surface into small parts, called components which are easier to fabricate and transport and
also more controllable in terms of precision in final product.

It is also possible sometimes to divide a curve surface into small flat parts and then get the overall
curvature by accumulation of the flat geometries which could be then fabricated from sheet
materials. There are multiple issues regarding the size, curvature, adjustment, etc. that we try to
discuss some of them.

Ch
ap

te
r_

6

105 Deformations and Morphing

G
A

_V
er

.0
2

Let’s start with a simple surface and a component as a module to panelize this surface.

Fig.6.6. A Generic double-curved surface for panelization.

Fig.6.7. Component that I want to proliferate on the surface……. Not special, just as an example!!!

Fig.6.8. First of all, I need to introduce the surface and module as Grasshopper components. Based on
the possible components in the Grasshopper, the idea is to generate couple of boxes on the surface
and use these boxes as target boxes and morph the module into them. So I introduced a <box
morph> and I used the module as geometry and as bounding-box. Now I need to generate target
boxes to morph the component into them.

Ch
ap

te
r_

6

106 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.9. The component that I need to make target boxes is <surface box> (XForm > Morph > Surface
box). This component generates multiple boxes over a surface based on the intervals on the surface
domain and height of the box. So I just attached the surface to it and the result would be target
boxes for the <box morph> component. Here I need to define the domain interval of the boxes, or
actually divide the numeric interval of the surface in its U and V direction to generate boxes.

Fig.6.10. In order to divide the surface domain, I used <divide interval2> which tells the <surface box>
that how many divisions in U and V directions I need. Another <number slider> defines the height of
target boxes which means height of morphed components.

So basically the idea is simple. We produce a module (a component) and we design our general
surface. Then we generate certain amount of boxes over this surface (as target boxes) and then we
morph the module into these boxes. After all we can change the number of elements in both U and
V direction and also change the module which updates automatically on the surface.

Ch
ap

te
r_

6

107 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.11. Final surface made up of our base modules

6_3_Micro Level Manipulations

Although it is great to proliferate a module over a surface, it still seems a very generic way of design.
We know that we can change the number of modules, or change the module by itself, but the result
is a generic surface and we don’t have local control of our system.

Now I am thinking of making a component-based system that we could apply more local control and
avoid designing generic surfaces which are not responding to any local, micro-scale criteria.

In order to introduce the concept, let’s start with a simple example and proceed towards a more
practical one. We used the idea of attractors to apply local manipulations to a group of objects. I am
thinking of applying the same method to design a component based system with local manipulations
by an attractor. The idea is to change the components size (in this case, their height) based on the
effect of a point attractor.

Ch
ap

te
r_

6

108 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.12. Lets look at the ingredients: A double-curved surface introduced as <Base_Srf> and a cone
introduced as <component> to the Grasshopper, a <divide interval2> for surface divisions, and a
<bounding box> as the reference box of the <component>. Here I used a <scale> component for my
bounding box. Later on, if I change the size of the bounding box, I can change the size of all
<component>s on the <base_srf> because of the change in reference box.

The <surface box> component has the height input which asks for the height of boxes in the given
intervals. The idea is to use relative heights instead of constant one. So instead of one number as
height, we can make a relation between the position of each box to the attractor’s position and
generate different numbers as associative heights.

What I need is to measure the distance between each box and the attractor. The technical problem
here is that there is not any box generated yet, so I need a point on surface at the center of each box
to measure the distance.

Fig.6.13. Here I used the same <divide interval2> which I want to use for <surface Box> for an
<Isotrim> component (Surface > Util > Isotrim). This component divides the surface into sub-surfaces.
By these sub-surfaces I can use another component which is <BRep Area> (Surface > Analysis > BRep
area) to use the by-product of this component which is ‘Area Centroid’ for each sub-surface. I
measured distances of these points (area centroids) from the <attractor> to use them as reference
factors for height of the target boxes in <surface box> component.

Ch
ap

te
r_

6

109 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.14. Now I divided the measured distances by a given number from <number slider> to control
the effect of the attractor and I used the result as ‘height’ input to generate target boxes with
<surface box> component. The surface comes from the <base_srf>, the <divide interval2> used as
surface domain and the heights coming from the relation of box positions and the attractor. As you
see, the height of boxes differ, based on the position of the <attractor> point.

Fig.6.15. The only remaining part, connecting the <component>, <scale>d bounding box and <surface
box> to a <morph box> component which proliferates component over the surface. By changing the
scale factor, you can change the size of the all components and like always, position of the attractor
is also manually controllable.

Ch
ap

te
r_

6

110 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.16. Final model.

As you see, the size of components started to accept local manipulations, based on an external
property which is a point attractor here. Although the idea is a simple attractor, the result could be
interesting and the idea is to show that we could differentiate reference boxes and get
differentiated results as well. Now we know that the morphing concept and panelization is not
always generic. Having tested the concept, let’s go for another practical experiment.

Ch
ap

te
r_

6

111 Deformations and Morphing

G
A

_V
er

.0
2

6_4_On Responsive Modulation

The idea for the next design experiment is to modulate a given surface with control over each
module which means any module of this system, has to be responsible for some certain criteria. So
even more than regional differentiation of the modules, here I want to have a more specific control
over my system by given criteria which could be environmental, functional, visual or any other
associative behaviour that we want our module be responsible for.

In the next example, in order to make a building’s envelope more responsive to the host
environment, I wanted the system to be responsive to the sun light. In your experiments it could be
wind, rain or internal functions or any other criteria that you are looking for, even combination of
them.

Here I have a surface, simply as the envelope of a building which I want to cover with two different
types of components. The first one is closed and does not allow penetration of the sun light and the
other has opening. These components should be proliferated over my envelope based on the main
direction of the sun light at the site. I set a user defined angle to say the algorithm that for the
certain degrees of sun light we should have closed components and for the others, open ones.

Grasshopper definition does not have anything new, but it is the concept that allows me to make
variations over the envelope instead of making a generic surface. Basically when the surface is free-
form and it moves around and has different orientations, it has different angles with the main sun
light at each part, so based on the angle differentiation between the surface and sun light, this
variation in components happens in the system.

Fig.6.17.First sketches of responsive modules of a façade system.

Ch
ap

te
r_

6

112 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.18. External surface of building as envelope which is aimed to panelize.

Ingredients:

Fig.6.19. Two different types of components for panelization.

Ch
ap

te
r_

6

113 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.20. The first step is similar to the previous experiments. I introduced <surface> and I used
<divide interval2> to divide it in U and V directions and I generated target boxes by <surface box>. I
also used <isotrim> with the same intervals as boxes to find the positions of boxes on the surface and
I used <BRep area> to find the centroid of this area (which is selected in green). At the same time I
used a <curve> component to introduce the main sun-light angle of the site and whit its <end points>
I made a <vector 2pt> which specify the direction of the sun light. You can manipulate and change
this curve to see the effect of sun light on components in different directions.

As you can see from the first image, there is a surface as envelope which is divided into parts for
component generation and there is a sun-light vector. I want to know angle between this vector and
the surface at the position of each component. I have to have a unique result for angle calculation,
and the best way is to use Normals of surface which are unique at each point. A Normal is a vector
which is perpendicular to the surface at a specific point. So I can use that to check the angle for each
component.

Fig.6.21. in order to evaluate the angle between sun-light and surface, I want to measure this angle
between sun light and normals of the surface at the position of each component. So I can decide for
each range of angles what sort of component would be suitable. So after generating the center
points, I need normals of the surface at those points. That’s why I used a <surface CP> to get the UV
parameters of points on the surface and use these parameters to <evaluate> the surface at those
points to actually get the normals of surface at those points.

Ch
ap

te
r_

6

114 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.22. Now I used an <angle> component (Vector > Vector > Angle) to evaluate the angle between
the sun direction and the façade. Then I converted this angle to degree and I used a <function> to see
whether this angle is bigger than the <max_angle> or not. This function (x>y) gives me Boolean data,
True for smaller angles and False for bigger angles.

Fig.6.23. Based on the Boolean data comes from the angle comparison, I <dispatch> the data which
are target boxes (I have the same amount of target box as the center points and normals so I can use
target boxes instead of points). So basically I divided my target boxes in two different groups whose
difference is the angle they receive the sun light.

Ch
ap

te
r_

6

115 Deformations and Morphing

G
A

_V
er

.0
2

The rest of the algorithm is simple and like what we have done before. I just need to morph my
components into the target boxes, here for two different ones.

Fig.6.24. Here I introduced two different components as single geometries and I used two <morph
box> components each one associated with one part of the <dispatched> data to generate <C_close>
or <C_open> components over the façade.

6.25. Now if you look closer, you can see that in different parts of the façade, based on its curvature
and direction, different types of components are generated.

Ch
ap

te
r_

6

116 Deformations and Morphing

G
A

_V
er

.0
2

Fig.6.26. Final model. The bifurcation of target boxes (and components) could be more than two in
the algorithm. It depends on design and criteria that we use.

We can think about a component based façade, in which some components are closed, and some
are open, which open ones have adjustable parts that orientate towards external forces, and even
reflect to the internal functions of the building and so on and so forth. You see that the idea is to
have micro scale control over the system and avoid generic designs. And it is clear that still we have
global (surface by itself) and regional (component by itself) control over the system as well.

Chapter_7_NURBS Surfaces and Meshes

Ch
ap

te
r_

7

118 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

7_1_Parametric NURBS Surfaces

We have had some experiments with surfaces in previous chapters. We used Loft and Pipe to
generate some surfaces. We also used free form surfaces and some surface analysis components
accordingly. Usually by surfaces, we mean Free-Form NURBS surfaces. In many cases generating
surfaces depends on other basic geometries like curves that we provide for our surface geometries
or sometimes points. There are multiple surface components in Grasshopper and if you have a little
bit of experience working with Rhino you should already know how to generate your surface
geometries by them.

Surface geometries seems to be the final products in our design, like facades, walls etc. and that’s
why we need lots of effort to generate the data like points and curves that we need as the base
geometries. Here I decided to design a very simple schematic building just to indicate that the
multiple surface components in the Grasshopper have the potential to generate different design
products by very simple basic constructs. I know the design process by itself might not be satisfying ,
here I just want to concentrate on using new components.

Parametric Tower

In the areas of Docklands of Thames in London, close to the Canary Warf, where the London’s high
rises have the chance to live, there are potentials to build some towers. I assumed that we can
propose one together, and this design could be very simple and schematic, here just to test some of
the basic ideas of working with free-form surfaces.

Let’s have a look at the area.

Fig.7.1. Arial view, Canary Warf, London (image: www.maps.live.com, Microsoft Virtual Earth).

The site that I have chosen to design my project is in the bank of Thames, with a very prestigious
view to the river and close to the entrance square of the centeral area of Canary Warf (Westferry
Road). I don’t want to go through site specifics so let’s just have a look at where I am going to
propose my tower and continue with geometrical issues.

http://www.maps.live.com/�

Ch
ap

te
r_

7

119 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.2. Site of the proposed tower.

Manual drawings

There are multiple ways to start this sketch. I can draw the ground floor and copy it above and start
to manipulate them and add details. I am sure that you already searched the web and got different
ideas about designing a tower associatively with this technique. Here I decided to use some surface
components so the technique might not be appropriate but the aim is to expand our experiments.

I have a vague idea in mind. My tower has a general glass surface which is covered by some linear
elements in façade, but because I don’t like to design a conventional tower, I also want to have some
hollow spaces on tower skin, scattered across the façade. These volumes would intersect façade’s
linear elements so these elements should be cut then. I also want to design a public space close to
the river and connected to the tower with the same elements as façade, continuous from tower
towards the river bank.

As you see in Figure 7.3 I drew my base curves manually in Rhino. These curves correspond to the
site specifics, height limitations, site’s shape and borders, etc, etc. The first curve was drawn and
then it mirrored for the next corner and again mirrored for the next one and so on. Another two
curves drawn as the borders of the public space, they started from the earth level and then went up
to be parallel to the tower edges. These curves are experimental. You can draw whatever you like
and go for the rest of the process.

Ch
ap

te
r_

7

120 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.3. Basic lines of the tower’s site.

Fig.7.4. For the first step, I imported these four corner curves into Grasshopper by a <curve>
component and then I used <divide curve> to divide these curves into 40 parts as floors of the tower.
As you see, the resultant division points are sorted in four different data branches.

Basic façade elements

Fig.7.5. Now I have to draw basic lines by these division points on façade to use them for façade
elements. Here I want to draw lines from division points of each curve to the same point of the next
curve. To do that, I used an <Explode Tree> called <Bang> component (Logic > Tree > Explode Tree) to
have access to different branches of data separately. I added <line>s from each branch points to the
next ones.

Ch
ap

te
r_

7

121 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.6. In this step I added my hollow spaces for the façade with random distribution. They are
ellipsoids who introduced in Grasshopper all together by a <Geometry> component. I also <Merge>d
all previously generated lines.

Fig.7.7. In this step, I <trim>ed all <merge>d lines with these <Geo>s. <Trim> component gives me the
trimmed part, inside and outside of the trimming area, here I used the outside part. I extruded those
parts as the linear façade elements.

Ch
ap

te
r_

7

122 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.8. There is a closed <curve> that connects four corners of the tower in plan. Here because I need
them to generate different surfaces, I <exploded> the curve to get its segments and I also used
<graft> to generate one branch for each curve. Since I have planner section curve and two edge
curves that define the boundary of the façade on each face, I want to use a <Sweep 2> component to
create façade surface by sweep 2 rail.

Fig.7.9. I introduced a <sweep 2> component to generate general façade surfaces. I used <graft>ed
plan curves as Section curves for sweep command. Rails should be edge curves. The <receiver>
component connected to the edge curves. I <graft>ed it once and I also <Shift>ed and <graft>ed it
again to generate all first and second rail curves associated with plan Section curves.

!! Note: if you do not get the same result as illustrated, the order of your edge curves (Rails) is not
associated with the order of your plan curves (Section curves) and you need to change the order of
your edge curves in the list either manually by re-assigning them to the <curve> component by
different order or by shifting the list in Grasshopper.

Ch
ap

te
r_

7

123 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.10. In this step I want to subtract hollow space <Geo>s from the previously generated façade
surface. Since the normal direction of the surface is important in this command, I <Flip>ed the surface
normal direction, and then I used a <Solid Difference> component (Intersect > Boolean > Solid
Difference) and the result is the main surface while <Geo>s has been removed.

Fig.7.11. With the same method, I introduced both curves of the public space, divided them, exploded
them and draw lines between them. I can connect this <line> component to the same <extrude>
component as façade elements to generate identical geometries.

Fig.7.12. After generation of all geometries, bake <Difference> and <Extrude> components.

Ch
ap

te
r_

7

124 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.13. Final sketch model.

Ch
ap

te
r_

7

125 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

7_2_Geometry and Topology

Up to now we have used different components and worked with NURBS surfaces. But as mentioned
before there are other types of surfaces which are useful in other contexts. It is not always the
smooth beauty of NURBS that we aimed for, but we might need more precise control, easier
processing or simpler equations. Beside the classical surface types of revolution, ruled or pipes, we
have different free form surfaces like Besier or B-Splines. But here I am going to talk a little bit about
Meshes which are different types of surfaces.

Meshes are another type of free-form surfaces but made up of small parts (faces) and accumulation
of these small parts makes the whole surface. So there is no internal, hidden mathematical function
that generates the shape of the surface, but these faces define the shape of the surface all together.

If we look at a mesh, first we see its faces. Faces could be triangle, quadrant or hexagon. By looking
closer, we can see a grid of points which make these faces. These points are basic elements of a
mesh surface. Any tiny group of these points (for example any three in triangular mesh) make a face
with which the whole geometry become surface. These points are connected together by straight
lines.

There are two important issues about meshes: position of these points and connection between
these points. Position of points related to the geometry of mesh and connectivity of points related
to the topology.

Fig.7.14. Topology and Geometry.

Geometry vs. Topology

While Geometry deals with the position of objects in space, Topology deals with their relations.
Mathematically speaking, topology is a property of object that transformation and deformation
cannot change it. So for instance circle and ellipse are topologically the same and they have only
geometrical difference. Have a look at Figure 7.14 As you see there are four points which are
connected to each other. In the first image, both A and B have the same topology because they have
the same relation between their points (same connection). But they are geometrically different,
because of displacement of one point. But in the second image, the geometry of points is the same
but their connectivity is different and they are not topologically equivalent.

Ch
ap

te
r_

7

126 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

The idea of topology is very important in meshes. Any face in a mesh object has some corner points
and these corner points are connected to each other with an order in a same way for all faces of the
mesh object. So we can apply any transformation to a mesh object and displace vertices of the mesh
in space even non-uniformly, but the connectivity of mesh vertices should be preserved to preserve
faces otherwise it collapses.

Fig.7.15. Both red and grey surfaces are meshes with the same faces and vertices, in the grey one,
vertices are displaced, make another geometrical configuration of mesh, but connectivity of mesh
object is not changed and both surfaces are topologically the same.

Knowing the importance of topological aspects of mesh objects, they are powerful geometries while
we have bunch of points and we need a surface type to represent them as a continuous space.
Different types of algorithms that work with points could be applied to a mesh geometry since we
save the topology of the mesh. For instance, using finite element analysis or specific applications like
dynamic relaxation, and particle systems, it is easier to work with meshes than other types of
surfaces since the function can work with mesh vertices.

Mesh objects are simple to progress and faster to process; they are capable of having holes inside
and discontinuity in the geometry. There are also multiple algorithms to refine meshes and make
smoother surfaces. Since different faces could have different colours initially, mesh objects are good
representations for analysis purposes (by colour) as well.

There are multiple components that deal with mesh objects in ‘mesh’ tab in Grasshopper. Let’s start
a mesh from scratch and push the primary limits that we are facing.

Ch
ap

te
r_

7

127 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

7_3_On Meshes

I have a group of points and I want to create a surface by these points. In this example the group of
points is simplified in a grid structure. I am thinking of a vertical grid of points that represent the
basic parameters of a surface which is being affected by an imaginary wind pressure. I want to
displace these points by wind factor (or any force that has a vector) and represent the resultant
deformed surface. Basically by changing the wind factor, we can see how the resultant surface
changes.

Fig.7.16. The first step is simple. By using a <series> component with controlled number of points
<N_pt>, and distance between them <distance_pt> I generated a grid of cross referenced <point>s.

The pressure of the imaginary wind force, affects all points in the grid but I assumed that the force of
wind increases when goes up, so the wind pressure becomes higher in bigger Z values of the
surfaces. And at the same time, wind force affects the inner points more than the points close to the
edges. Points on the edges in the plan section do not move at all (fix points).

Fig.7.17. Diagram of the wind force affected the surface. A: section; the vertical effect of the force, B:
plan; the horizontal effect.

Ch
ap

te
r_

7

128 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Basically I need two different mechanisms to model these effects, one for section diagram and
another for plan. I simplified equations just to mimic the way we want the force affects points. For
the first mechanism the concept is a simple mathematical equation; I just used (X^2) while X is the Z
value of the point being affected by the force. So for each point I need to extract the Z coordinate of
the point.

To make everything simple, I assumed that the force direction is in the Y direction of the world
coordinate system. So for each point on the grid, I need to generate a vector in Y direction and I set
its force by the number that I receive from the Z coordinate of that point.

For the second diagram we need a bit more of an equation to do. Let’s have a look at part one first.

Fig.7.18. The Z coordinates of points extracted by a <decompose> component and then powered by
(x^2) and divided by a given <number slider> just to control the general movement. The result is
factors to <multiply> the force vector (Vector > Vector > Multiply) which is simply a world <unit Y>
vector.

Fig.7.19. If I displace points by these vectors you can see the resultant grid of points that satisfy the
first step of this task.

Now if we look at the second part of described forces, as I said, I assumed that in the planner
section, points on the edges are fixed and points on the middle displace more than others. Figure
7.20 shows this displacement for each row of the point grid.

Ch
ap

te
r_

7

129 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.20. Displacement of points in rows (planner view).

Since I have force vectors for each point, I need to control them and set a value again, to make sure
that their displacement in the planner section is also met the second criteria. So for each row of the
points in the grid, I want to generate a factor to control the force vector’s magnitude. Here I
assumed that for points in the middle, the force vector’s power are maximum that means what they
are, and for points on the edges, it become zero means no displacement and for the other points a
range in between.

Fig.7.21. For the second mechanism, I need a <range> of numbers between 0 and 1 to apply to each
point; 0 for the edge, 1 for the middle. I need a range from 0 to 1 from one edge to the middle and
then from 1 to 0 to go from middle to other edge. I need this <range> component generates values as
much as the number of points in each row.

I set the <N_pt> to the even numbers, and I divided it by 2, then minus 1 (because the <range>
component takes the number of divisions and not number of values). You see the first <panel> shows
four numbers from 0 to 1 for the first half of the points. then I <reverse>d the list and I merged these
two lists together and as you see in the second <panel> I generated a list from 0 to 1 to 0 and the
number of values in the list is the same as number of points in each row.

The final step is to generate these factors for all points in the grid. So I <duplicate>d the points as
much as <N_pt> (number of rows and columns are the same). Now I have a factor for all points in the
grid based on their positions in their rows.

Ch
ap

te
r_

7

130 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.22. Now I need to <multiply> force vectors again by new factors. If I displace points by these
new vectors, we can see how two different mechanisms affected the whole point grid.

Actually this part of the example needed a little bit of analytical thinking. In reality, methods like
Particle Spring Systems or Finite Element Analysis, use the concept that multiple vectors affecting
whole points in the set and points affecting each other as well. So when you apply a force, it affects
all points and points affecting each other simultaneously. These processes should be calculated in
iterative loops to find the resting position of the whole system. Here I just make a simple example
without these effects and I just wanted to show a very simple representation of such a system
dealing with multiple forces and I used very simple mathematical equations, which in real subjects
are a bit more complicated! The idea is more about the mesh representation of this process, so let’s
go for mesh generation part.

Mesh

Fig.7.23. Mesh generating. Now if you simply add a <mesh> component (Mesh > Primitive > Mesh) to
the canvas and connect displaced points to it as vertices, you will see that nothing happening in the
scene. We need to define faces of the mesh geometry to generate it. Faces of mesh are actually
series of numbers who just define the way these points are connected together to make the faces of
each surface. So here vertices are geometrical part of the mesh but we need the topological
definition of the mesh to generate it as well.

Ch
ap

te
r_

7

131 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Every four corner point of the grid, define a quadrant face for the mesh object. If we look at the
point grid, we see that there is an index number for each point in the grid. We know each point by
its index number instead of coordinates in order to deal with its topology.

Fig.7.24. Index numbers of points in the grid.

To define mesh faces, we need to call every four corners that we assumed to be a face and put them
together and give them to the <mesh> component to be able to make mesh surface.

Fig.7.25. In a given point grid, a simple quadrant face defines by an order of points that if you
connect them by a curve, you can make a face. This curve starts from a point in the grid, goes to the
next point, then goes to the same point of the next row and then goes to the back column point of
that row, and by closing this curve, you see the first face of the mesh finds its shape. Here the first
face has points [0,1,6,5] in its face definition. The second face has [1,2,7,6] and so on.

Ch
ap

te
r_

7

132 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

To define the whole mesh faces, we should find the relation between these points and then make an
algorithm that generates these face matrices for us.

If we look at the face matrix, we see that for any first point, the second point is the next in the grid.
So basically for each point (n) in the grid, the next point of the face is (n+1). Simple!

For the next point of the grid, we know that it is always shifts one row, so if we add the number of
columns (c) to the point index (n) we should get the point at the next row (n+c). So for instance in
the above example we have 5 columns so c=5 and for the point (1) the next point of the mesh face is
point (n+c) means point (6). So for each point (n) as the first point, the third point would be (n+1+c).
That’s it.

For the last point, it is always stated in one column back of the third point. So basically for each point
(n+1+c) as the third point, the next point is (n+1+c-1) which means (n+c). So for instance for point (6)
as the third point the next point becomes point (5).

All together for any point (n) in the grid, the face that starts from that single point has this points
as the ordered list of vertices: [n, n+1, n+1+c, n+c] while (c) is the number of columns in the grid.

Fig.7.26. After defining all mesh faces, the mesh can be generated.

Looking at the mesh vertices, there is a bit more to deal with. If you remember the ‘Triangle’
example of chapter 3, there was an issue to select points that could be the first points in the grid. If
you look at the grid of points in the above example, you see that points on the last column and last
row could not be start points of any face. So beside the fact that we need an algorithm to generate
faces of the mesh object, we need a bit of data management to generate the first points of the
whole grid and pass these first points to the algorithm and generate mesh faces.

Ch
ap

te
r_

7

133 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

So basically in the list of points, we need to omit the points of the last row and last column and then
start to generate face matrices. To generate the list of faces, we need to generate a list of numbers
as index of points.

Fig.7.27. Generating index number of the first points in the grid with a <series> component. The
number of values in the series comes from the <N_pt> as the number of columns (same as rows) and
by using a function of < x * (x-1)> I want to generate a series of numbers as <columns*(rows-1)> to
generate the index for all points in the grid and omit the last row. The next step is to <cull> the index
list by the number of columns (<N_pt>) to omit the index of points in the last column as well.

Fig.7.28. Final index number of the possible first points of mesh faces in the grid (with 8 points in
each column).

Ch
ap

te
r_

7

134 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.29. A <Mesh quad> component (Mesh > Primitive > Mesh quad) is in charge of generating faces
in Grasshopper. I just attached the list of first numbers to the first point of the <quad>.

Now this is time to generate the list of indices for the faces:

Fig.7.30. While (n) is the index of the first point and (c) is the number of columns, the second point is
(n+1), the third point is ((n+1)+c) (the index of second point + number of columns), and the last point
is ((n+1+c)-1) (the index of the third point -1).

Ch
ap

te
r_

7

135 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.31. The resultant mesh.

7_4_On Colour Analysis

To finish this example, let’s have a look at how we can represent our final mesh with colours as a
medium for analysis purposes. There are different components in Grasshopper that provide us
colour representations and these colours are suitable for our analysis purposes.

Here in this example, again to bring a concept, I simply assumed that at the end, we want to see the
amount of deviation of our final surface from the initial position (vertical surface). I want to apply a
gradient of colours start from points which remained fix with bottom colour up to points which has
the maximum amount of deviation from the vertical position with the higher colour of the gradient.

Simply, to find the amount of deviation, I need to measure the final state of each point to its original
state. Then I can use these values to assign colour to the mesh faces base on these distances.

Fig.7.32. If I go back, I have the initial point grid that we generated in the first step and I also have
the final displaced point grid that I used to generate the mesh vertices. I can use a <distance>
component to measure distance between the initial position of points and their final position to see
deviations of points.

Ch
ap

te
r_

7

136 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.33. For our analysis purpose I want to use a <Gradient> component (Params > Special >
Gradient) to assign gradient of colours to the mesh. I attached my <distance> values to the
parameter part (t) of the <Gradient> and I attached it to the Colour input of the <mesh> component.

But to complete the process I need to define the lower limit and upper limit of gradient range (L0
and L1). Lower limit is the minimum value in the list and upper limit is maximum value in the list and
other values are being divided in the gradient in between. To get the lower and upper limit of the list
of deviations I need to sort the data and get the first and last values in that numerical range.

Fig.7.34. By using a <sort> component to sort distances, I get the first item of the data list (index= 0)
as lower limit and the last one (index= <list length> - 1) as the upper limit of the data set (deviation
values) to connect to the <gradient> component to assign colours based on this range.

Ch
ap

te
r_

7

137 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Fig.7.35. By clicking on the small colour icon on the corner of the <gradient> component we can
change the colours of the gradient.

Fig.7.36. Right-click on the component and on the context pop-up menu you have more options to
manipulate your resultant object, different types of colour gradients to suit the graphical
representation of your analysis purpose.

Fig.7.37. Different gradient thresholds.

Ch
ap

te
r_

7

138 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

7_5_Manipulating Mesh objects as a way of Design

Depends on the object and purpose of the modelling, I personally prefer to get my mesh object by
manipulating a simple mesh geometry instead of generating a mesh from scratch since defining
point set and face matrices are not always simple. By manipulating, I mean we can use a simple
mesh object, extract its components and change them and then again make a mesh with varied
vertices and faces. So I do not need to generate points as vertices and matrices of faces.

Let’s have a look at a simple example.

Fig.7.38. In this example, I simply used a <mesh plane> component and I extracted its data by using a
<mesh components> to have access to its vertices and faces. Then I displaced vertices along Z
direction by random values powered by a <number slider> and again attached them to a <mesh>
component to generate another mesh. Here I also used a <cull pattern> component and I omitted
some of the faces of original mesh and then I used them as new faces for making another mesh. The
resultant mesh has both geometrical and topological difference by its initial mesh and can be used
for other design purposes.

Geometry Manipulations

Topology Manipulations

Ch
ap

te
r_

7

139 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

This idea of geometrically manipulating the vertices and topologically changing the faces has so
many different possibilities that you can use in your design experiments. Since the mesh object has
the potential to omit some of its faces and still it remains as a surface, the idea of making porous
surfaces could be pursued with different ways.

Fig.7.39. Resultant manipulated mesh (just a random case!).

Fig.7.40. This is a sketch of a manipulated mesh!

Ch
ap

te
r_

7

140 NURBS Surfaces and Meshes

G
A

_V
er

.0
2

Triangulation

Fig.7.41. Examples of Triangulation components.

There are multiple components under the Triangulation panel in Mesh tab which provides useful
algorithms like Delaunay or Voronoi or Convex Hull for design purposes. These internal algorithms
could be useful to design complex objects and the most important point about them is that they use
point sets to generate their output geometries. They are easy to explore and you can find lots of
examples on-line and I don’t want to go in-depth to describe them. So go ahead and explore them.

Chapter_8_Fabrication

Ch
ap

te
r_

8

142 Fabrication

G
A

_V
er

.0
2

Chapter_8_Fabrication

Today there is a growing interest on practice with Computer Aided Manufacturing and digital
fabrication. Because of changes and new trends in design processes, it seems a crucial move and one
of the ‘Musts’ in the field of design, to shift into the realm of digital fabrication. Any design decision
in digital space, should be tested in different scales to show the ability of fabrication and assembly.
Since it is obvious that the new design processes and algorithms do not fit into the traditional
building techniques, designers now try to use modern technologies for fabrication and they adapt
their design products to meet necessities. From the moment that CNC machines started to serve the
building industry up to now, a great relation between digital design and physical fabrication have
been made and many different technologies and machineries being invented or adjusted to do these
types of tasks.

In order to design building elements and fabricate them, we need to have a brief understanding of
fabrication processes for different types of materials and know how to prepare our design outputs
for them. Based on the object we designed and material we used, assembly logic, transportation,
scale, etc. we need to provide suitable data from our design product and get desired output, to feed
machineries. If traditional way in realization of a project made by Plans, Sections, Details, etc. today,
we need data and code to transfer to machines to fabricate a project.

The point here is that designer should involve in providing required data, because it is highly
interconnected with design object. Designer sometimes should use the feedback of the fabrication-
data-preparation for the design re-adjustment. Sometimes the design object should be changed in
order to fit the limitations of the machinery or assembly.

Up to this point, we already know different potentials of Grasshopper to alter the design, and these
design variations could be in favour of fabrication as well as other criteria we did. I just want to open
the subject and touch some of the points related to the data-preparation phase, to have a look at
possibilities of data extraction from design project for fabrication but we know that the subject is
widely open for different techniques, machineries, materials, etc.

8_1_Datasheets

In order to prepare data to realize an object, sometimes we simply need a series of measurements,
angels, coordinates and generally numerical data. There are multiple components in Grasshopper to
compute measurements, distances, angels, etc. The important point is the correct and precise
selection of points that we need to address for any specific purpose. We should be aware of any
geometrical complexity that exists in design to choose desired positions for measurement purposes.
The next point is to find positions that give us proper data for our fabrication purpose and avoid to
generate lots of tables of numbers which could be time consuming in big projects but useless at the
end. Finally we need to export data from 3D software to spreadsheets and datasheets and
sometimes we need to manipulate this data in a way needed.

Ch
ap

te
r_

8

143 Fabrication

G
A

_V
er

.0
2

Fig.8.1. Paper Strips, first try.

In the next step I tried to start with a very simple set up and understand the geometrical logic and
use it as the base for digital modelling. I assumed that by jumping into digital modelling I would not
be able to make physical model and I was sure that I need to test the early steps with paper.

My aim was to use three paper strips and connect them, one in the middle and another two, in both
sides of middle one, but with longer length, restricted at their ends to the middle strip. This could be
the basic module to repeat and generate bigger assemblies.

Paper Strip Project

The idea and technique of paper strips attracted me for some investigations. To understand the logic
of assemblies I started with very simple combinations for first level and I tried to add these simple
combinations together as the second level of assembly. It was interesting in the first tries but soon
became out of order and the result was not what I assumed. So I tried to be more precise to deal
with the complex geometries at the end.

Fig.8.2. simple paper strip combination to understand connections and logic.

Ch
ap

te
r_

8

144 Fabrication

G
A

_V
er

.0
2

Fig.8.3. First modelling method with middle line and interpolated curves as side strips.

But it seemed so simple and straightforward. So I decided to add a gradual size-differentiation in
connection points so it would result in a bit more complex geometry. Now let’s move into
Grasshopper and continue the discussion by modelling. I will try to describe the definition briefly and
go to the data parts.

Digital modelling

Here I wanted to model the paper strip digitally, after my basic understanding of the physical one.
From the start point I need a very simple curve in the middle as the base of my design and I can
divide it and by culling these division points (false, true) and moving True ones perpendicular to the
middle curve and using all these points (moved ones and false ones) as the vertices for two
interpolated curves I can model this paper strips almost the same as what I described.

Fig.8.4. The <curve> component is the middle strip which is a simple curve in Rhino. I reparameterized
it and I want to evaluate it in decreasing intervals. I used a <range> component and I attached it to a
<Graph Mapper> component (Params > Special > Graph Mapper) to generate evaluation parameters.
A <Graph mapper> remaps a set of numbers in many different ways by choosing a particular graph
type. As you see, I evaluated the curve with this <Graph mapper> with parabola graph type and the
resultant points on the curve are clear. You can change the type of graph to change the mapping of
numeric range (for further information go to the component help menu). So I <Evaluate>d those
parameters on the initial curve (<receiver> connected to the <curve>).

Ch
ap

te
r_

8

145 Fabrication

G
A

_V
er

.0
2

Fig.8.5. After remapping the numerical data and evaluating points, I want to find midpoints for every
two points of previous set. Here I have to find the parameters of the curve, between each basic point
and the next one, to evaluate. Since I have parameter of every first point, I <shift>ed the data to find
next points. I also used <cull> with frequency of <list length> to exclude last item of the main list to
have same items as <shift>ed list. The <function> component finds the parameter in between
(f(x)=(x+y)/2) and you see the resultant parameters being evaluated (<receiver> connected to the
<crv>).

Fig.8.6. Now I want to move midpoints and make deviated vertices of the side strips. These points
must move always in a perpendicular direction to the middle curve. So in order to move them, I need
vectors, perpendicular to the middle curve at the position of each point. I already have the Tangent
vector at each point, by <evaluate> component but I need the perpendicular vector.

We now that a Cross product of two vectors is a vector always perpendicular to both of them
(Fig.8.7). For example unit Z vector could be the cross product of unit X and Y vectors. Our middle
curve is a planer curve so we know that the Z vector at each point of the curve would be always
perpendicular to the curve plane. Tangent vector at each point of curve is situated at the plane of
curve as well. So if I find the cross product of Tangent vector and unit Z vector at each point, the
result would be a vector perpendicular to the middle curve which is always lay down on the curve’s

Ch
ap

te
r_

8

146 Fabrication

G
A

_V
er

.0
2

plane. I used Tangent of the point from <evaluate> Component and a <unit Z> vector to find the
<XProd> of them which I know that is perpendicular to the curve even I manipulate it manually.

Another trick! I used the numbers of <Graph Mapper> as power factors of these Z vectors to have
increasing factors for movements of points as well, so the longer the distance between points, the
bigger their displacements.

Fig.8.7. Vector cross product. Vector A and B are in base plane. Vector C is the cross product of A and
B and it is perpendicular to the base plane so it is also perpendicular to both vectors A and B.

Fig.8.8. Now I have both basic points (first evaluated points) and moved points. I <weave>d them
together to have a sorted list of data. Now if I use these points to generate an <interpolate>d curve,
you see that the basic curve of the side strip is there.

Ch
ap

te
r_

8

147 Fabrication

G
A

_V
er

.0
2

Fig.8.9. Using a <Mirror Curve> component (XForm > Morph > Mirror Curve) I can mirror the
<interpolate>d curve by middle <curve> which is connected to the <receiver> so I have both side
paper strips with the same concept.

Fig.8.10. Now if I connect middle curve and side curves to an <extrude> component I can see my first
paper strip combination with decreasing spaces between connection points.

Fig.8.11. I can simply start to manipulate the middle strip and see how Grasshopper updates three
paper strips which are connected to each other, or I can change my sliders and check the resultant
geometry to select one, which is close to the physical model.

Ch
ap

te
r_

8

148 Fabrication

G
A

_V
er

.0
2

After I found a configuration that I want to create paper strip model with, I need to extract
dimensions and measurements to build my model with that data. Although it is easy to model all
these strips on paper sheets and cut them with laser cutter but here I like to make the process more
general and get the initial needed data, so I am not limited myself to one specific machine and one
specific method of manufacturing. You can use this data as generic manufacturing codes!!!!

By doing a simple paper model, I know that I need the position of connection points on strips and it
is obvious that these connection points are in different length in left_side_strip, right_side_strip and
middle_strip. So if I get the division lengths from Grasshopper I can mark them on strips.

Since strips are curves, the <distance > component does not help me to find measurements. I need
distance of points from each other or from the start point of strip but on curve, so when I use it on
unfolded paper strip, it gives me the correct position.

To get these lengths I need to find parameters of the connection points on strips (curves) and
evaluate their position and the same component would give me the distance of those points from
start point of the curve as well.

Fig.8.12. As you see I used the first set of evaluated points that I called them main curve points on the
middle strip (initial curve). The (L) output of the component gives me distances of points (connection
points) from the start points of the strip for middle strip. I also used these points to find their
parameter on one side curve. So I used a <curve cp> component to find parameters of points on curve
(t). So I used these parameters to evaluate the curve and find their distances from the start point. I
would do the same for the next side strip as well.

Make sure that the direction of all curves should be the same and check where is the start point of
the curve (the origin of measurements).

Ch
ap

te
r_

8

149 Fabrication

G
A

_V
er

.0
2

Fig.8.13. Right-click on the <panel> component and click on the ‘Stream Contents’. By this command
you would be able to save your data in different formats and use it as a general numeric data. Here I
will save it with simple .txt format and I want to use it in Microsoft Excel.

Exporting Data

Fig.8.14. On Excel sheet, simply click on an empty cell and go to the ‘Data’ tab and under the ‘Get
External Data’ select ‘From Text’. Then select the saved txt file from the address you saved your
stream contents and follow the simple instructions of excel. These steps allow you to manage your
different types of data, how to divide your data in different cells and columns etc.

Ch
ap

te
r_

8

150 Fabrication

G
A

_V
er

.0
2

Fig.8.15. Now you see that your data placed on the Excel data sheet. You can do the same for the rest
of your strips.

Fig.8.16. Table of the distances of connection points alongside the strip.

Ch
ap

te
r_

8

151 Fabrication

G
A

_V
er

.0
2

If you have a list of 3D coordinates of points and you want to export them to Excel, there are
different options for that. If you export 3D coordinates with the above method you will see there are
lots of unnecessary brackets and commas that you should delete. You can also add columns by
clicking in the excel import text dialogue box and separate these brackets and commas from the text
in different columns and delete them but again because the size of numbers are not the same, you
will find characters in different columns that you could not align separation lines for columns easily.

In such case I simply recommend you to decompose your points to their components and export
them separately. It is not a big deal to export three lists of data instead of one.

Fig.8.17. Using <decompose> component to get the X, Y and Z coordinates of the points separately to
export to a data sheet.

I strongly recommend you to professionally work with Excel and other spreadsheets because they
help us in data managements in different ways and situations.

Enough for modelling! I used provided data to mark my paper strips and connect them together and
create a simple model. To prove it even to myself, I did all process with hand !!!! to show that
fabrication does not necessarily mean laser cutting (but sometimes HAM, as Achim Menges (EmTech
AA tutor) once used for Hand Aided Manufacturing!!!! For fun). I just spent an hour to cut and mark
all strips but the assembly process took a bit longer which should be done by hand anyway.

Ch
ap

te
r_

8

152 Fabrication

G
A

_V
er

.0
2

Fig.8.18. Final paper-strip project.

Ch
ap

te
r_

8

153 Fabrication

G
A

_V
er

.0
2

8_2_Laser Cutting and Cutting based Manufacturing

The idea of laser cutting sheet materials is very common these days to fabricate complex
geometries. There are different ways that we can use this possibility to fabricate objects. Laser
cutter method suits objects that built with developable surfaces or folded ones. One can unfold a
digital geometry on a plane and simply cut it out of a sheet and fold the material to build it. It is also
suitable to make complex geometries that could be reduced to separate pieces of flat surfaces and
one can disassemble the whole model digitally in separate parts, nest them on flat sheets, add the
overlapping parts for connection purposes (like gluing) and cut and assemble physically. It is also
possible to fabricate double-curved objects by this method. It is well being experimented to find
different sections of any ‘Blob’ shaped object, cut it at least in two directions and assemble these
sections together usually with Bridle joints and make rib-cage shaped models.

Since laser cutter is a generic tool, there are various methods, but all together the important point is
to find a way, to reduce geometry to flat pieces to cut them from a sheet material, no matter paper
or metal, cardboard or wood and finally assemble them together.

Among different ways discussed here, I want to test one of them in Grasshopper and I am sure that
you can experiment other methods easily.

Fig.8.19. Here I have a surface and I introduced this surface to Grasshopper as a <Geometry>
component, so you can introduce any geometry that you have designed or use any Grasshopper
object that you have generated.

Free-Form Surface Fabrication

I decided to fabricate a free-form surface to have some experiments with preparing and nesting
pieces of a free-form object to cut and all other issues we need to deal with.

Ribs as Sections

In order to fabricate this generic free-form surface I want to create sections of this surface, nest
them on sheets and prepare files to be cut by laser cutter. If the object that you are working on has a
certain thickness then you can cut it, but if the model does not have any thickness, you need to add
a thickness to cutting parts.

Ch
ap

te
r_

8

154 Fabrication

G
A

_V
er

.0
2

Fig.8.20. in the first step I used a <Bounding Box> component to find the area that I want to work on.
I also used a <Box corners> component (Surface > Analysis > Box corners) to find the opposite corners
of box and use them as limits of range that I want to generate my ribs alongside the geometry. So by
calculating length and width of the box, I used these numbers as domains that I want to divide by a
<range> component. Basically by using <number slider> I can simply divide the length and width of
the box in desired parts.

Fig.8.21. My aim is to generate planes alongside the length and width of the box as much as ribs I
need. First I generated two planes, one <YZ plane> and one <XZ plane>, first one perpendicular to the
length of the box and second one perpendicular to the width. I generated both of them on the first
corner of the box by connecting them to the A output of the <box corners>. Now I can generate <Unit
X> and <Unit Y> vectors alongside the length and width of the box, and by connecting the <range>
components to them, I can make vectors for all division points. Then I can <move> XZ and YZ planes
by these vectors and generate series of frames alongside length and width of the object’s bounding
box.

Ch
ap

te
r_

8

155 Fabrication

G
A

_V
er

.0
2

Fig.8.22. Frames generated alongside the length and width of the object’s bounding box,
perpendicular to the edge.

Fig.8.23. Now if I find the intersection of these planes and the surface, I actually generated the ribs
and this is the half way to fabricate the surface. Here I used a <BRep | Plane> section component
(Intersect > Mathematical > BRep | Plane) to solve this problem. I used the <Geometry> (my initial
surface) as BRep and planes of previous step, as planes to feed the section component.

Ch
ap

te
r_

8

156 Fabrication

G
A

_V
er

.0
2

Fig.8.24. Intersections of frames and surface, resulted in series of curves on the surface.

Fig.8.25. Paper sheets and an underlying surface to represent them in Grasshopper.

I am going to use <Orient> component (XForm > Euclidian > Orient) to nest my curves into the
surface which represents sheets for cutting purpose. If you look at the <orient> component you see
that we need the object’s plane as reference plane, and target plane which should be on the sheet.
So here I should generate these planes to nest my cutting objects. Since I used planes to intersect
the initial surface and generate section curves, I can use them again as reference planes, so I only
need to generate target planes.

Nesting

The next step is to nest these curve sections on a flat sheet to prepare them for cutting process.
Here I drew a rectangle in Rhino with my sheet size. I copied this rectangle to generate multiple
sheets overlapping each other and I drew one surface that covers all these rectangles.

Ch
ap

te
r_

8

157 Fabrication

G
A

_V
er

.0
2

Fig.8.26. I introduced cutting surface to Grasshopper and I used a <surface Frame> component
(Surface > Util > Surface frames) to generate series of frames across the surface. We can generate
planes, as much as our geometry needs.

Fig.8.27. Orientation. I connected section curves as base geometries, and planes that I used to
generate these sections as reference geometry to the <orient> component. But still a bit of
manipulation is needed for the target planes. If you look at the results of <surface frame>
component, you see that if you divide U direction by 1, it would generate 2 columns to divide the
surface. So I have more planes than needed. That’s why I <split>ed the list of target planes by the
number that comes from the number of reference curves. So I only use planes as much as curves that
I have. Then I moved these planes 1 unit in X direction to avoid overlapping with the sheet’s edge.
Now I can connect these planes to the <orient> component and you can see that all curves now
nested on the cutting sheet.

Ch
ap

te
r_

8

158 Fabrication

G
A

_V
er

.0
2

Fig.8.28. nested curves on the cutting sheet.

Fig.8.29. After nesting curves into cutting sheet, as I told you, because our object does not have any
thickness, in order to cut it, we need to add thickness to it. That’s why I <offset> curves with desired
height and I also add <line>s to both ends of these curves and their offset ones to close the whole
drawing so I would have complete ribs to cut.

Generating Ribs

Generating Joints (Bridle Joints)

The next step is to generate ribs in other direction and make joints to assemble them after being cut.
Although I used the same method of division of the bounding box length to generate planes and
then sections, but I can generate planes manually in any desired position as well. So in essence if you
do not want to divide both directions and generate sections, you can use other methods of
generating planes instead of evenly dividing the edge.

Ch
ap

te
r_

8

159 Fabrication

G
A

_V
er

.0
2

Fig.8.30. As you see here, instead of previously generated planes, I used manually defined planes for
sections in the other direction of the surface. One plane generated by X value directly from <number
slider> and another plane comes from the mirrored plane on the other side of the surface (surface
length (y) – number slider (x)). Section of these two planes and surface is being calculated for the
next steps.

Now I can orient these new curves on another sheet to cut, which has the same process as the other
one. So let’s generate joints for the assembly of parts which is important.

Fig.8.31. since we have curves in two directions, we can find their points of intersection to design
joints on that positions. That’s why I used <CCX> components (Intersect > Physical > Curve | Curve) to
find the intersect position of these curves which means the joint positions (The <CCX> component is in
cross reference mode).

Ch
ap

te
r_

8

160 Fabrication

G
A

_V
er

.0
2

I need a bit of drawing to prepare these joints to cut. I am thinking of preparing bridle joints so I
need to cut half of each rib on the joint position to be able to join them at the end. First I need to
find these intersection positions on nested ribs and then draw lines for cutting.

Fig.8.32. If you look at the outputs of the <CCX> component you would see that it gives us the
parameter in which, each curve intersects with the other one. So I can <evaluate> nested or
<orient>ed curves with these parameters to find the joints’ positions on cutting sheets.

Fig.8.33. Now we have the joint positions, we need to draw them. First I drew lines with <line SDL>
component with the joint positions as start points, <unit Y> as direction and I used half of the rib’s
height as the length of the line. So as you see each point on nested curves now has a tiny line
associated with it.

Ch
ap

te
r_

8

161 Fabrication

G
A

_V
er

.0
2

Fig.8.34. Next step, draw a line in X direction from the previous line’s end points with the length of
the <sheet_thickness> (depends on the material).

Fig.8.35. To draw the third line I need to find the point where this line connects to the base curve
because I don’t know its length exactly. In this step, I added another <line SDL> with Y direction and
minus value to draw the third line, but a bit longer than needed, to cross the base curve, to find the
intersection point. The <receiver> connected to the oriented curves. So I used <CLX> (Intersect >
Mathematical > Curve | line>) to find intersection positions with base curve. I <Flatten>ed these
points and added <line>s, again from the end point of the second line to this intersection point. As a
result, joints are completed now. I have to complete this for both side joints.

Ch
ap

te
r_

8

162 Fabrication

G
A

_V
er

.0
2

Fig.8.36. Using a <join curves> component (Curve > Util > Join curves) now as you can
see I have a slot shaped <join curve> that I can use for cutting as bridle joints inside
ribs. I am applying the same method for the other end of the curve (second series of
joints on the other side of the oriented curve).

Fig.8.37. Ribs with joints drawn on their both ends. I can trim the tiny part of the base curve inside
joints but because it does not affect the geometry I can leave it.

Labelling

While working in fabrication phase, it might be a great disaster to cut hundreds of small parts
without any clue or address that how we are going to assemble them together, what is the order,
and which one goes first. It is obvious that because all parts are different, we need to label them in
order to assemble easily.

Ch
ap

te
r_

8

163 Fabrication

G
A

_V
er

.0
2

It could be simply a number or a combination of text and number to address pieces. If the object
comprises of different main parts each divided into pieces, then we can name main parts, so we can
use these names or initials with numbers to address the pieces (i.e. left_wing_01). We can use
different hierarchies of project assembly logic in order to name parts as well (i.e. layer_01_p_45).

Here I just need a series of numbers to show the position of ribs in the list. I can use <text tag>
component in order to add text to my geometry and for that, I need text to display, position of the
text, and height of the text.

Fig.8.38. As you remember I had a series of planes which I used as target planes for orientating my
section curves on the sheet. I am going to use same planes to make positions of the text. Since these
planes are exactly at the corner of ribs I have to displace them first.

Fig.8.39. I moved corner planes 1 unit in X direction and 0.5 unit in Y direction (as <sum> of the
vectors) and I used these planes as positions of text tags. Here I used <text tag 3D> and I generated a
series of numbers as much as ribs I have to use them as texts. The <integer> component that I used
here converts 12.0 to 12 but you can do it with functions as well. As a result, you can see all parts
have a unique number in their left corner.

Ch
ap

te
r_

8

164 Fabrication

G
A

_V
er

.0
2

Fig.8.40. Now you can change division factors of the cutting surface to compress ribs as much as
possible to avoid wasting material. As you see in the above example, from the start point of the
sheet_3, ribs started to be more flat and you have more space in between. Here you can split your
ribs in two different cutting surface and change the division points of them, to compress them based
on their shape. But if you are not dealing with lots of parts you can always do this type of stuff
manually in Rhino; all parts do not need to be Associative! Now I have ribs in one direction, and I am
going to do the same for the other direction of ribs as well. The only point that you should consider
here is that the direction of joints flip around, so basically while I was working with the <orient>ed
geometry in the previous part here I should work with the <offset> one.

Fig.8.41. Nested ribs, ready to be cut.

Cutting

When all geometries become ready to cut, I need to Bake them and manage them a bit more on my
sheets. As you see in Figure 8.41 they all nested in three sheets. I generated three different shapes
for ribs in the width direction of the object to check them out. The file is now ready to be cut.

Ch
ap

te
r_

8

165 Fabrication

G
A

_V
er

.0
2

Fig.8.42. Sample of Ribs, ready to assemble.

Assembly

In our case assembly is quite simple. Sometimes you need to check your file again or even provide
some help file in order to assemble your parts in different fabrication methods. All together, here is
the surface that I made by paper sheet.

Ch
ap

te
r_

8

166 Fabrication

G
A

_V
er

.0
2

8.43. Final Model.

Ch
ap

te
r_

8

167 Fabrication

G
A

_V
er

.0
2

Fabrication is a wide topic to discuss. It highly depends on what you want to fabricate, what is the
material, what is the machine and how fabricated parts going to be assemble and so on. As I told you
before, depends on the project you are working on, you need to provide your data for fabrication
stages. Sometimes it is more important to get the assembly logic, for example when you are working
with simple components, but complex geometry as a result of assembly.

Fig.8.44. Assembly logic; Material and joints are simple; I can work on the assembly logic and use the
data to make my model.

Chapter_9_Design Strategy

Ch
ap

te
r_

9

169 Design Strategy

G
A

_V
er

.0
2

Design Strategy

Generative Algorithms are algorithmic and Parametric/Associative ways of dealing with geometry in
design problems. More than conventional geometrical objects, with this algorithmic method, now
we have all possibilities of computational geometries as well as managing huge amount of data,
numbers and calculations. Here the argument is to not limit the design in any predefined
experiment, and explore infinite potentials; there are always alternative ways to set up design
algorithms. Although it seems that the in-built commands of these parametric modelling softwares
could limit some actions or dictate methods, but alternative solutions can always be brought to the
table, let our creativity fly away of limitations.

In order to design something, having a Design Strategy always helps to set up the best possible
algorithm to find the design solution. Thinking about general properties of design object, drawing
some parts, even making some physical models, would help for a better understanding of the
algorithm so better choice of <components> in digital modelling. Thinking about fix parameters,
parameters that might change during the design, numerical data and geometrical objects needed,
always help to improve the algorithm. It would be helpful to analytically understand the design
problem, sketch it and then start an algorithm that can solve the problem.

We should think in an algorithmic way to design algorithmic!

Ch
ap

te
r_

9

170 Design Strategy

G
A

_V
er

.0
2

Fig.9.1. Weaving project; From Analytical understanding to Associative modelling.

Ch
ap

te
r_

9

171 Design Strategy

G
A

_V
er

.0
2

Fig.9.2. Porous wall project; From Analytical understanding to Associative modelling.

172

Bibliography

Pottman, Helmut and Asperl, Andreas and Hofer, Michael and Kilian, Axel, 2007: ‘Architectural
Geometry’, Bently Institute Press.

Hensel, Michael and Menges, Achim, 2008: ‘Morpho-Ecologies’, Architectural Association.

Rutten, David, 2007: ‘Rhino Script 101’, digital version by David Rutten and Robert McNeel and
Association.

Flake, Gary William, 1998: ‘The computational beauty of nature, computer explorations of fractals,
chaos, complex systems, and adaptation’, The MIT Press.

De Berg, Mark and Van Kreveld, Marc and Overmars, Mark, 2000: ‘Computational Geometry’,
Springer.

Grasshopper tutorials on Robert McNeel and Associates wiki:
http://en.wiki.mcneel.com/default.aspx/McNeel/ExplicitHistoryExamples.html

Axel Kilian and Stylianos Dritsas: ‘Design Tooling - Sketching by Computation’,
http://www.designexplorer.net/designtooling/inetpub/wwwroot/components/sketching/index.html

Wolfram Mathworld: http://mathworld.wolfram.com/

Stylianos Dritsas, http://jeneratiff.com/

Main Grasshopper web page: http://grasshopper3d.com/

173

Notes

174

GENERATIVE ALGORITHMS
using GRASSHOPPER

Zubin Khabazi
Ver.02

www.MORPHOGENESISM.com

http://www.morphogenesism.com/�

	Chapter_1_Generative Algorithms
	1_1_ Generative Algorithms

	Chapter_2_The very Beginning
	2_1_Method
	2_2_Basics of Grasshopper
	2_2_1_Interface, Workplace
	2_2_2_Components
	2_2_3_Data matching
	2_2_4_Component’s Help (Context pop-up menu)
	2_2_5_Type-In Component Search / Add

	Chapter_3_Data Sets and Math
	3_1_Numerical Data Sets
	3_2_On Points and Point Grids
	3_3_Other Numerical Sets
	3_4_Functions
	3_5_Boolean Data types
	3_6_Cull Lists
	3_7_ Data Lists
	3_8_On Planar Geometrical Patterns

	Chapter_4_Transformations
	4_1_Vectors and Planes
	4_2_On Curves and Linear Geometries
	4_3_Combined Experiment: Swiss Re
	4_4_On Attractors

	Chapter_5_Parametric Space
	5_1_One Dimensional (1D) Parametric Space
	5_2_Two Dimensional (2D) Parametric Space
	5_3_Transition between spaces
	5_4_Basic Parametric Components
	5_4_1_Curve Evaluation
	5_4_2_Surface Evaluation
	5_4_3_Curve and Surface Closest Point

	5_5_On Object Proliferation in Parametric Space
	5_6_On Data Trees

	Chapter_6_ Deformations and Morphing
	6_1_Deformations and Morphing
	6_2_On Panelization
	6_3_Micro Level Manipulations
	6_4_On Responsive Modulation

	Chapter_7_NURBS Surfaces and Meshes
	7_1_Parametric NURBS Surfaces
	7_2_Geometry and Topology
	7_3_On Meshes
	7_4_On Colour Analysis
	7_5_Manipulating Mesh objects as a way of Design

	Chapter_8_Fabrication
	8_1_Datasheets
	8_2_Laser Cutting and Cutting based Manufacturing

	Chapter_9_Design Strategy
	Bibliography

